
Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Crochemore’s repetitions algorithm revisited -
computing runs

F. Franek M. Jiang

Department of Computing and Software
McMaster University, Hamilton, Ontario

Prague Stringology Conference PSC09, Prague
August 31 - September 4, 2009

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Outline

1 Why we are interested in Crochemore’s repetitions algorithm

2 A brief description of Crochemore’s algorithm

3 Simple modifications that worsen the complexity

4 A modification that preserves the complexity

5 Test Results

6 Conclusion

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

A run, a maximal fractional repetition in a string was
conceptually introduced by Main in 1989. The term run was
coined by Iliopoulos, Moore, and Smyth in 1997.

..............
s s+p-1 s+p s+2p-1 s+(e-1)p s+ep-1 s+ep s+ep-1+t

 generator
p = period (generator length) > 0

 tail
 0 t < p

 repeats e times
e = power, exponent > 1

leading square of the run trailing square of the run

s+(e-2)p+t

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Computing runs in linear time

Main gave the following “blueprint" for an algorithm to compute
the leftmost occurrence of every run in a string x :

1 Compute a suffix tree of x
2 using the suffix tree, compute Lempel-Ziv factorization of x

(linear, Lempel and Ziv)
3 using the Lempel-Ziv factorization, compute the leftmost

runs (linear, Main)

Farach 1997 gave a linear-time algorithm to compute suffix tree.
Kolpakov and Kucherov 2000 showed how to compute all runs
in x from the leftmost ones in linear time.

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Suffix trees and Farach’s algorithm are not very practical for this
task, but suffix arrays are:

Lempel-Ziv factorization can be computed in linear time
using suffix array (Abouelhoda at al. 2004)
Suffix array can be computed in linear time
(Kärkkäinen+Sanders 2003, Ko+Aluru 2003)

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Thus, a practical blueprint for a linear time algorithm for
computing runs:

1 Compute a suffix array of x
2 using the suffix array, compute the Lempel-Ziv factorization

of x
3 using the Lempel-Ziv factorization, compute the leftmost

runs
4 using the leftmost runs, compute all runs

Current implementations along these lines – Johannes
Fischer’s at Universität Tübingen, Kucherov’s at CNRS Lille,
and CPS by G. Chen, S.J. Puglisi & W.F. Smyth

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Why we are interested in Crochemore’s repetitions
algorithm, thought it has “only" O(n log n) complexity.

The linear time strategy just discussed is complicated and
elaborate and does not lend itself well to parallelization due
to the recursive nature of the (linear) computation of the
suffix array.
The “heart" of Crochemore’s repetitions algorithm, the
refinement of the classes can be done naturally in parallel
as the refinement of one class is independent from the
refinement of another class.
We have a good and “space efficient" implementation of
Crochemore’s algorithm.
A modified Crochemore’s algorithm may outperform the
linear implementations (at least on some classes of
strings).

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

a b a a b a b a a b a a b a b $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

{0,2,3,5,7,8,10,11,13}a {1,4,6,9,12,14}b

level

1

{2,7,10}aa {1,4,6,9,12}ba2 {0,3,5,8,11,13}ab {14}b$

{2,7,10}aab {1,6,9}baa3 {0,3,5,8,11}aba {4,12}bab{13}ab$

{2,7,10}aaba {1,6,9}baab4 {0,5,8}abaa {4}baba{3,11}abab {12}bab$

{7}aabaa {1,6,9}baaba5 {0,5,8}abaab{3}ababa{2,10}aabab {11}abab$

6 {0,5,8}abaaba{2}aababa {10}aabab$ {6}baabaa

7 {5}abaabaa {0,8}abaabab {1}baababa

{1,9}baabab

{9}baabab$

8 {0}abaababa {8}abaabab$

{15}$

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Our implementation

CNext[]

CPrev[]

CEnd[]

CStart[]

CSize[]3

c1={2,4,5}

0 1 2 3 4 5 6

4 5 O

42O

2

5

CMember[]111

indexesN

Total this slide 6*N
subtotal 6*N

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

CEmptyStack

SelQueue

ScQueue

RefStack

Refine[]

0 1 2 3 4 5 6 indexesN

Total this slide 5*N
subtotal 11*N

0 1 3 ….

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

FNext[]

FPrev[]

FStart[]

FMember[]

f2={3,5}

0 1 2 3 4 5 6

5 O

3O

indexesN

3

Total this slide 4*N
overall total 15*N2 2

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

CNext[]

CPrev[]

CEnd[]

CStart[]

CSize[]

c1={2,4,5}

0 1 2 3 4 5 6

4 5 3

2

2

CMember[]111

indexesN

Total this slide 4*N
subtotal 4*N

5 Memory
virtualization

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

CEmptyStack

SelQueue

ScQueue

Refine[]

RefStack

0 1 2 3 4 5 6 indexesN

Total this slide 2*N
subtotal 6*N

0 1 3 …. Memory
multiplexing

Refine[] is virtualized over FNext[], FPrev[], and FStart[]

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

FNext[]

FPrev[]

FStart[]

FMember[]

f2={3,5}

0 1 2 3 4 5 6

5

3

indexesN

3

Total this slide 4*N
overall total 10*N

2 2

Refine[] is virtualized over

Memory
virtualization

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Gap[]

GapList[]

GNext[]

GPrev[]

0 1 2 3 4 5 6

5

indexesN

6

Total this slide 4*N
overall total 14*N2

3

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

What needs to be modified

The algorithm outputs the repetitions grouped by the period
(good), but regardless of the positions of the repetitions (bad)

a b a a b a b a a b a a b a b $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(10,1,2)
(7,1,2)
(2,1,2)
(11,2,2)
(3,2,2)
(4,2,2)
(6,3,2)
(5,3,3)
(0,3,2)
(7,3,2)
(0,5,2)
(1,5,2)

a b a a b a b a a b a a b a b $
a b a a b a b a a b a a b a b $
a b a a b a b a a b a a b a b $
a b a a b a b a a b a a b a b $
a b a a b a b a a b a a b a b $
a b a a b a b a a b a a b a b $
a b a a b a b a a b a a b a b $
a b a a b a b a a b a a b a b $
a b a a b a b a a b a a b a b $
a b a a b a b a a b a a b a b $
 a b a a b a b a a b a a b a b $
 a b a a b a b a a b a a b a b $

run

run

run

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Thus, the repetitions must be “collected" and “consolidated"
into runs.

The following three variants differ in the process of “collection"
and the process of “consolidation".

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Simple modifications that worsen the complexity -
Variant A

We collect the repetitions of the same period (during the
processing of one level) and consolidate them immediately into
runs stored in a search tree according to the starting position.
The runs are reported when a level is processed and the
search tree is not preserved (the data structure is reused for
the next level).

When descending the tree, we compare the current repetition
with the run stored in the node. If the repetition extends the run,
the run is updated and the search is terminated.

If we reach the “destination", the repetition is stored in a new
node as a run with 0 tail.

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Data structure for variant A:

RunLeft[] (reuse FNext[])

RunRight[] (reuse FPrev[])

Run_s[] (reuse FMember[])

Run_end[] (reuse FStart[])

To save space, we store the runs as (start,end). The period
does not need to be stored, as all the runs are of the same
period.
No extra memory required, however the complexity is increased
to O(n(log n)2).

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Simple modifications that worsen the complexity -
Variant B

We collect the repetitions and consolidate them immediately
into runs stored in search trees according to the starting
position. All runs of the same period are collected in the same
tree. The runs are reported when all levels are processed, and
hence all search trees must be preserved during the
processing. The rules of “consolidation" are the same as in
variant A.

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Data structure for variant B:

RunLeft[]

 Run_p[]

RunRight[]

Run_s[]

Run_end[]

p1 p2

Search tree
for period p1

Search tree
for period p2

5n integers of extra memory required, the complexity is
increased to O(n(log n)2).

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Are we guaranteed that 5n integers is enough memory for all
the search trees?

No, but
(a) we believe in the Maximum Run Conjecture that stipulates

that there are at most n runs, in which case the space
would be sufficient,

(b) and if our program crashes at this point, we have found a
counter-example to the Maximum Run Conjecture, a nice
consolation price for the crash.

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

A modification that preserves the complexity -
Variant C

We collect all repetitions according their starting positions in n
buckets and do not consolidate them at all during the
processing of the levels.

This requires at most n log n integers of additional memory.

Buckets[]
s

p1 d1

p2 d2

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

When all levels have been processed and all repetitions
collected in the buckets, we sweep the buckets from left to right
and consolidate the repetitions into runs.

Buckets[]

Run_Last[] (reuse FNext[])

s

p1 d1

p2 d2

Run_s[] (reuse FNext[])
p2

s

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Test Results

Implementations of the three variants were compared as to
their performance. The testing was rather informal, just to
give indications how the three variants compare.
Hardware: Sony VAIO laptop with Intel Core-2 Duo CPU
T5800 @ 2.00GHz, 4GB of RAM
Software: Windows Vista Home Premium SP1. The code
was written in C++ and was compiled using the GNU g++
compiler.
Each run was repeated five times, the minimum numbers
were recorded.

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Comparing speed performance
Data Set File Name String Length Time (seconds)

Variant A Variant B Variant C
1 DNA dna.dna4 510976 105.87 110.15 3.12
2 English bible.txt 4047392 63.27 62.65 23.90
3 Fibonacci fibo.txt 305260 173.30 177.00 2.39
4 Periodic fss.txt 304118 159.61 168.78 2.44
5 Protein p1Mb.txt 1048576 47.93 53.23 5.15
6 Protein p2Mb.txt 2097152 189.20 189.98 11.42
7 Random random2.txt 510703 193.01 189.28 4.42
8 Random random21.txt 510703 7.69 7.46 1.89

Comparing speed performance

0.00

50.00

100.00

150.00

200.00

250.00

1 2 3 4 5 6 7 8

Variant A
Variant B
Variant C

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Comparing speed performance
Data Set File Name String Length Time (seconds)

Variant A Variant B Variant C
1 DNA dna.dna4 510976 105.87 110.15 3.12
2 English bible.txt 4047392 63.27 62.65 23.90
3 Fibonacci fibo.txt 305260 173.30 177.00 2.39
4 Periodic fss.txt 304118 159.61 168.78 2.44
5 Protein p1Mb.txt 1048576 47.93 53.23 5.15
6 Protein p2Mb.txt 2097152 189.20 189.98 11.42
7 Random random2.txt 510703 193.01 189.28 4.42
8 Random random21.txt 510703 7.69 7.46 1.89

Comparing speed performance

0.00

50.00

100.00

150.00

200.00

250.00

Data
sets

Data sets

se
co

nd
s Variant A

Variant B
Variant C

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Comparing speed performance per character of input
Data Set File Name Name # of runs Time (µsec / letter)

Variant A Variant B Variant C
1 DNA dna.dna4 510976 130368 207.18 215.57 6.11
2 English bible.txt 4047392 63690 15.63 15.48 5.91
3 Fibonacci fibo.txt 305260 233193 567.70 579.83 7.82
4 Periodic fss.txt 304118 281912 524.84 554.98 8.01
5 Protein p1Mb.txt 1048576 69605 45.71 50.76 4.91
6 Protein p2Mb.txt 2097152 139929 90.22 90.59 5.45
7 Random random2.txt 510703 210122 377.93 370.62 8.64
8 Random random21.txt 510703 24389 15.06 14.60 3.70
9 Overall average 230.53 236.55 6.32

Comparing speed performance per character of input

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

1 2 3 4 5 6 7 8 9

Variant A
Variant B
Variant C

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Comparing speed performance per character of input
Data Set File Name Name # of runs Time (µsec / letter)

Variant A Variant B Variant C
1 DNA dna.dna4 510976 130368 207.18 215.57 6.11
2 English bible.txt 4047392 63690 15.63 15.48 5.91
3 Fibonacci fibo.txt 305260 233193 567.70 579.83 7.82
4 Periodic fss.txt 304118 281912 524.84 554.98 8.01
5 Protein p1Mb.txt 1048576 69605 45.71 50.76 4.91
6 Protein p2Mb.txt 2097152 139929 90.22 90.59 5.45
7 Random random2.txt 510703 210122 377.93 370.62 8.64
8 Random random21.txt 510703 24389 15.06 14.60 3.70
9 Overall average 230.53 236.55 6.32

Comparing speed performance per character of input

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

1 2 3 4 5 6 7 8 9

Data sets

m
ic

ro
-s

ec
on

ds

Variant A
Variant B
Variant C

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

The results allow for a quick conclusion:
1 Overall, variant C is significantly faster than variants A and

B. In fact by 3643%!
2 Even though variant A requires less additional memory,

speed-wise does not do much better than B.
3 The speed of variants A and B is not proportional to the

string’s length. Rather, it mostly depends on the type of the
string. It works better on strings with large alphabet size
and low periodicity. This is intuitively clear, as for high
periodicity strings the height of the search trees are large.

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Memory saving modifications of Variant C

C1: repetitions are collected for a round of K levels, then a
sweep is executed and the resulting runs are reported, and
the bucket memory is then reused in the next “batch" of
repetitions. For our experiments, we used K = 100, so we
refer to this variant as C1-100.
C2: we consolidate repetitions with small periods (≤ K)
into runs when putting them to the buckets (this saves
memory since there are fewer runs than repetitions). For a
repetition with period p ≤ K and start s, we check p
buckets to the left and to the right of s; for p > K , we check
K buckets to the left and to the right of s. This guarantees
that all repetitions up to period K have been consolidated
into runs before the final sweep, while repetitions of
periods > K are partially consolidated.

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Thus the final sweep ignores the repetitions with periods
≤ K . Beside saving memory, the final sweep is a bit
shorter, while putting repetitions into the buckets is a bit
longer. For our experiments, we used K = 10, so we refer
to this variant as C2-10.

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Comparing speed performance of the variants C, C1-100, and C2-10

Data Set File Name File size # of runs Time (seconds)
(bytes) C C1-100 C2-10

1 DNA dna.dna4 510976 130368 3.02 3.04 2.87
2 English bible.txt 4047392 63690 20.29 20.36 20.53
3 Fibonacci fibo.txt 305260 233193 2.75 6.60 2.76
4 Periodic fss.txt 304118 281912 2.65 5.34 3.02
5 Protein p1Mb.txt 1048576 69605 4.47 4.52 4.42
6 Protein p2Mb.txt 2097152 139929 10.21 10.56 10.29
7 Random random2.txt 510703 210122 4.15 4.16 4.01
8 Random random21.txt 510703 24389 1.59 1.65 1.57

Comparing speed performance of the variants C, C1-100, and C2-10

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8

C
C1-100
C2-10

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Comparing speed performance of the variants C, C1-100, and C2-10

Data Set File Name File size # of runs Time (seconds)
(bytes) C C1-100 C2-10

1 DNA dna.dna4 510976 130368 3.02 3.04 2.87
2 English bible.txt 4047392 63690 20.29 20.36 20.53
3 Fibonacci fibo.txt 305260 233193 2.75 6.60 2.76
4 Periodic fss.txt 304118 281912 2.65 5.34 3.02
5 Protein p1Mb.txt 1048576 69605 4.47 4.52 4.42
6 Protein p2Mb.txt 2097152 139929 10.21 10.56 10.29
7 Random random2.txt 510703 210122 4.15 4.16 4.01
8 Random random21.txt 510703 24389 1.59 1.65 1.57

Comparing speed performance of the variants C, C1-100, and C2-10

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8

Data sets

se
co

nd
s C

C1-100
C2-10

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Comparing memory usage of the variants C, C1-100, and C2-10

Data set File name File size Alphabet # of Memory (blocks)
(bytes) size runs C C1-100 C2-10

1 DNA dna.dna4 510976 5 130368 510976 510976 510976
2 English bible.txt 4047392 63 63690 4047392 4047392 4047392
3 Fibonacci fibo.txt 305260 2 233193 2747340 1221040 610520
4 Periodic fss.txt 304118 2 281912 1824708 912354 608236
5 Protein p1Mb.txt 1048576 23 69605 1048576 1048576 1048576
6 Protein p2Mb.txt 2097152 23 139929 2097152 2097152 2097152
7 Random random2.txt 510703 2 210122 510703 510703 510703
8 Random random21.txt 510703 21 24389 510703 510703 510703

Comparing memory usage of the variants C, C1-100, and C2-10

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000

1 2 3 4 5 6 7 8

C
C1-100
C2-10

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Comparing memory usage of the variants C, C1-100, and C2-10

Data set File name File size Alphabet # of Memory (blocks)
(bytes) size runs C C1-100 C2-10

1 DNA dna.dna4 510976 5 130368 510976 510976 510976
2 English bible.txt 4047392 63 63690 4047392 4047392 4047392
3 Fibonacci fibo.txt 305260 2 233193 2747340 1221040 610520
4 Periodic fss.txt 304118 2 281912 1824708 912354 608236
5 Protein p1Mb.txt 1048576 23 69605 1048576 1048576 1048576
6 Protein p2Mb.txt 2097152 23 139929 2097152 2097152 2097152
7 Random random2.txt 510703 2 210122 510703 510703 510703
8 Random random21.txt 510703 21 24389 510703 510703 510703

Comparing memory usage of the variants C, C1-100, and C2-10

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000

1 2 3 4 5 6 7 8

Data sets

m
em

or
y

bl
oc

ks

C
C1-100
C2-10

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

For the next set of tests we used large strings with large
number of runs. The strings were obtained from W. Matsubara,
K. Kusano, A. Ishino, H. Bannai, and A. Shinohara’s website
dedicated to “Lower Bounds for the Maximum Number of Runs
in a String" at URL
http://www.shino.ecei.tohoku.ac.jp/runs/

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Comparing speed of C, C1-100, and C2-10 on large run-rich strings

File name File size Alphabet # of Time (seconds)
(bytes) size runs C C1-100 C2-10

1 60064.txt 60064 2 56714 0.34 0.51 0.34
2 79568.txt 79568 2 75136 0.50 0.72 0.56
3 105405.txt 105405 2 99541 0.70 1.05 0.79
4 139632.txt 139632 2 131869 1.06 1.59 1.10
5 176583.txt 176583 2 166772 1.71 2.58 1.43
6 184973.txt 184973 2 174697 1.63 2.78 1.46

Comparing speed of C, C1-100, and C2-10 on large run-rich strings

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6

C
C1-100
C2-10

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Comparing speed of C, C1-100, and C2-10 on large run-rich strings

File name File size Alphabet # of Time (seconds)
(bytes) size runs C C1-100 C2-10

1 60064.txt 60064 2 56714 0.34 0.51 0.34
2 79568.txt 79568 2 75136 0.50 0.72 0.56
3 105405.txt 105405 2 99541 0.70 1.05 0.79
4 139632.txt 139632 2 131869 1.06 1.59 1.10
5 176583.txt 176583 2 166772 1.71 2.58 1.43
6 184973.txt 184973 2 174697 1.63 2.78 1.46

Comparing speed of C, C1-100, and C2-10 on large run-rich strings

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6

Data sets

se
co

nd
s C

C1-100
C2-10

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Memory usage of C, C1-100, and C2-10 on large run-rich strings

File name File size Alphabet # of Time (seconds)
(bytes) size runs C C1-100 C2-10

1 60064.txt 60064 2 56714 240256 180192 120128
2 79568.txt 79568 2 75136 318272 238704 159136
3 105405.txt 105405 2 99541 527025 316215 210810
4 139632.txt 139632 2 131869 698160 418896 279264
5 176583.txt 176583 2 166772 882915 529749 353166
6 184973.txt 184973 2 174697 924865 554919 369946

Memory usage of C, C1-100, and C2-10 on large run-rich strings

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

1 2 3 4 5 6

C
C1-100
C2-10

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Memory usage of C, C1-100, and C2-10 on large run-rich strings

File name File size Alphabet # of Time (seconds)
(bytes) size runs C C1-100 C2-10

1 60064.txt 60064 2 56714 240256 180192 120128
2 79568.txt 79568 2 75136 318272 238704 159136
3 105405.txt 105405 2 99541 527025 316215 210810
4 139632.txt 139632 2 131869 698160 418896 279264
5 176583.txt 176583 2 166772 882915 529749 353166
6 184973.txt 184973 2 174697 924865 554919 369946

Memory usage of C, C1-100, and C2-10 on large run-rich strings

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

1 2 3 4 5 6

Data sets

m
em

or
y

bl
oc

ks

C
C1-100
C2-10

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

Conclusion

We extended Crochemore’s repetitions algorithm to
compute runs.
Of the three variants, variant C is by far more efficient
time-wise, but requiring O(n log n) additional memory.
However, its performance warranted further investigation
into further reduction of memory requirements.
The preliminary experiments indicate that C2-K is the most
efficient version and so it is the one that should be the
used as the basis for parallelization.
Let us remark that variant C (and any of its modifications)
could be used as an extension of any repetitions algorithm
that reports repetitions of the same period together.

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

Why we are interested in Crochemore’s repetitions algorithm A brief description of Crochemore’s algorithm Simple modifications that worsen the complexity A modification that preserves the complexity Test Results Conclusion Thanks

T HANK YOU

Franek, Jiang

Crochemore’s repetitions algorithm revisited - computing runs

	Why we are interested in Crochemore's repetitions algorithm
	A brief description of Crochemore's algorithm
	Simple modifications that worsen the complexity
	A modification that preserves the complexity
	Test Results
	Conclusion
	Thanks

