Outline	Introduction	R-cover	Computation on distinct squares	Program	Future work

Computational approaches to the maximum number of distinct squares

Mei Jiang Joint work with Antoine Deza and Frantisek Franek

Advanced Optimization Laboratory Department of Computing and Software McMaster University

November 22, 2011

同 ト く ヨ ト く ヨ ト

Outline	Introduction	R-cover 0000	Computation on distinct squares	Program	Future work
Outlin	е				

1 Introduction

3 Computation on distinct squares

向下 イヨト イヨト

Outline	Introduction	R-cover 0000	Computation on distinct squares	Program	Future work
Outlir	ne				

1 Introduction

2 R-cover

3 Computation on distinct squares

Program

Outline	Introduction ●○	<i>R</i> -cover	Computation on distinct squares	Program	Future work
Basic	Notation				

- A square is a repetition with power of 2, encoded as (s, p, 2), distinct squares means only the types of the squares are counted, primitively rooted distinct squares means the generator itself is not a repetition. i.e. x = aababaa.
- $\sigma_d(n)$ denotes the maximum number of primitively rooted distinct squares over all strings of length *n* containing exactly *d* distinct symbols.
- A singleton refers to a symbol in a string that occurs exactly once, a **pair** occurs exactly twice.

・同下 ・ヨト ・ヨト

Outline	Introduction ○●	R-cover 0000	Computation on distinct squares	Program	Future work
<i>d</i> -ste	o Approach				

We introduced a *d*-step approach to investigate the problem of distinct squares in relationship to the alphabet of the string [4].

\setminus	n - d											
	$\overline{\ }$	1	2	3	4	5	6	7	8	9	10	
	1	1	1	1	1	1	1	1	1	1	1	
	2	1	2	2	3	3	4	5	6	7	7	
	3	1	2	3	3	4	4	5	6	7	8	
	4	1	2	3	4	4	5	5	6	7	8	
d	5	1	2	3	4	5	5	6	6	7	8	
u	6	1	2	3	4	5	6	6	7	7	8	
	7	1	2	3	4	5	6	7	7	8	8	
	8	1	2	3	4	5	6	7	8	8	9	
	9	1	2	3	4	5	6	7	8	9	9	
	10	1	2	3	4	5	6	7	8	9	10	

(d, n-d) Table: $\sigma_d(n)$ with $1 \le d \le 10$ and $1 \le n - d \le 10$

- 4 同 6 4 日 6 4 日 6

Outline	Introduction	<i>R</i> -cover	Computation on distinct squares	Program	Future work
Outlir	ne				

3 Computation on distinct squares

Program

(1日) (日) (日)

Outline	Introduction	<i>R</i> -cover ●○○○	Computation on distinct squares	Program	Future work
Motiv	ration				

- Finding square-maximal strings by brute force algorithm is time consuming with large *d* and *n*.
- The goal is to prune down the search space of the squaremaximal strings as much as possible.
- (d,n-d) table shows $\sigma_d(n)$ is either larger than or equal to the previous computed values.

通 と く き と く き と

3

Outline	Introduction	<i>R</i> -cover ○●○○	Computation on distinct squares	Program 00	Future work
<i>R</i> -cov	ver				

We define a set of squares $\{R_i = (s_i, p_i, 2) : 1 \le i \le m\}$ is an *R*-cover of a string x if:

- **(**) each R_i is a distinct primitively rooted square in x;
- 2 for every R_i , $1 \le i \le m$, R_i is unique in $x[1..s_i + 2p_i 1]$;
- **●** for every R_i and R_{i+1} , $1 \le i < m$, R_{i+1} is not in $x[s_i + 2p_i + 1..n]$;
- for every R_i and R_{i+1} , $1 \le i < m$, $s_i < s_{i+1} \le s_i + 2p_i$ and $s_i + 2p_i 1 < s_{i+1} + 2p_{i+1} 1$;
- So for all 1 ≤ j ≤ n, there exists an 1 ≤ i ≤ m such that $s_i ≤ j ≤ s_i + 2p_i 1;$

Outline	Introduction	<i>R</i> -cover ○○●○	Computation on distinct squares	Program	Future work
Doubl	e <i>R</i> -cover				

- By Fraenkel-Simpson [1], there are at most two right most distinct squares starting at the same position in a string.
- $\sigma_d(n)$ is increased at most 2 compare to the previous computed value $\sigma_d(n-1)$.
- Further prune down the search space of square-maximal strings.

伺 とう ヨン うちょう

Outline	Introduction	R-cover ○○○●	Computation on distinct squares	Program 00	Future work
Double	e <i>R</i> -cover	(cont.)			

Proposition 1

A square-maximal string x with d symbols and length n has $\sigma_d(n) = \sigma_d(n-1) + 2$, x satisfy the **double** R-cover density condition: every letter in x occurs in at least two distinct squares.

Proof.

Suppose x does not meet the double *R*-cover density condition: there exist a letter in x occurs in only one distinct square. The removal of this letter (form string y), will destroy at most one square of x. Therefore $\sigma_d(n) = s(x) \le s(y) + 1 \le \sigma_d(n-1) + 1$ which leads to a contradiction.

(ロ) (同) (E) (E) (E)

Outline	Introduction	<i>R</i> -cover 0000	Computation on distinct squares	Program 00	Future work
Outlir	ne				

回 と く ヨ と く ヨ と

Outline	Introduction	R-cover	Computation on distinct squares ●○○	Program	Future work
Along	the row				

- Motivation
 - achieve better upper bound for $\sigma_d(n)$ with given d, i.e. $\sigma_2(n) \le 2n 47$ with $\sigma_2(37) = 27$;
 - 2 conjecture exact formula of $\sigma_d(n)$ with d = 2 row.
- Search space is narrowed down on strings satisfy double *R*-cover density.
- Compare to $\sigma_d(n-1)$, if rule out the possibility of $\sigma_d(n)$ increasing by 2 and by 1 in double *R*-cover strings search space, then search only one *R*-cover string that increases by 1 is sufficient.

Outline	Introduction	<i>R</i> -cover	Computation on distinct squares ○●○	Program	Future work
Main	diagonal				

- Motivation
 - **(**) prove the conjecture of $\sigma_d(n) \leq n d$ is true up to certain d;
 - 2 achieve better upper bound of $\sigma_d(n)$ for all d and n, i.e. $\sigma_d(n) \le 2n d_0 2d$, where d_0 is the maximum where $\sigma_{d_0}(2d_0) = d_0$ is known;
- Computationally with smaller search space of strings:
 - satisfy double *R*-cover density;
 - **2** contains at least $\lceil \frac{2d}{3} \rceil$ singletons[4], *i.e. computationally, we only need to generate strings with* $d = \lfloor \frac{d}{3} \rfloor$ *and* $n = d + \lfloor \frac{d}{3} \rfloor$;
 - no pairs[4];
 - parity condition.

Outline	Introduction	<i>R</i> -cover	Computation on distinct squares ○○●	Program	Future work
Main	diagonal (cont)			

Proposition 2

A square-maximal string x with d symbols and length 2d contains an R-cover satisfies the **parity condition**: the overlap of any two R-cover squares must contain the symbols that occur in both of the non-overlapping parts.

Outline	Introduction	R-cover 0000	Computation on distinct squares	Program	Future work
Outlir	ne				

3 Computation on distinct squares

Outline	Introduction	R-cover 0000	Computation on distinct squares	Program ●○	Future work
Descr	iption				

- Build double *R*-cover strings:
 - With all possible periods, consider all primitive generators and extend it to form the first square;
 - 2 Calculate the weak point by far;
 - O Build the next square within range which satisfies:
 - the generator is primitive;
 - is unique by far.
 - Repeat step 2 and 3 and until reach desire length;
 - When desire length is reached, ensure there is no weak point.

• Apply the appropriate conditions: i.e. parity condition when computing the main diagonal value.

Outline	Introduction	<i>R-cover</i> 0000	Computation on distinct squares	Program ○●	Future work
Prelin	ninary Res	ult			

- Program was implemented in C++, and run on Advol5 (8× Quad-Core AMD Opteron 8356) and Advol3 (16× Dual Core AMD Opteron 885) server.
- Along the row:
 - $\sigma_2(37)$ was computed in about 5 days;
 - did not return any result for weeks by brute force program.
- On the main diagonal:
 - $\sigma_{16}(32)$ (equivalent to $\sigma_5(21)$) was computed in about 1 hour and 40 minutes;
 - took weeks to run $\sigma_{10}(20)$ by brute force program.

Outline	Introduction	R-cover 0000	Computation on distinct squares	Program 00	Future work
Futur	e work				

1 Introduction

2 R-cover

3 Computation on distinct squares

Program

(1日) (1日) (日)

Outline	Introduction	<i>R</i> -cover	Computation on distinct squares	Program 00	Future work
Future	e work				

- Use heuristic search on *R*-cover strings. i.e. apply conditions that likely to return square maximal strings with increase of 1.
- Current program recomputes all *R*-cover strings for length n-1 when computes length *n*. Develop a mechanism to be able to extend *R*-cover strings from shorter ones.
- Parallelize the program to speed up the computation.
- Because of the nature of the *R*-cover strings for distinct squares, we have to allow intermediate squares crossing the *R*-cover squares which is the bottleneck of the program.
- If the first and the last *R*-cover squares are the same for a given string and its reversal string, then we could avoid generating duplicated strings by restricting p₁ ≤ p_m.

・ロン ・回と ・ヨン ・ヨン

Outline	Introduction	<i>R</i> -cover	Computation on distinct squares	Program	Future work
Refere	ences				

- A. S. FRAENKEL and J. SIMPSON, *How Many Squares Can a String Contain?*, Journal of Combinatorial Theory Series A, 82, 1 (1998), 112-120.
- L. ILIE, A simple proof that a word of length n has at most 2n distinct squares, Journal of Combinatorial Theory Series A, 112, 1 (2005) 163-164.
- L. ILIE, A note on the number of squares in a word, Theoretical Computer Science, 380, 3 (2007), 373-376.
- A. DEZA, F. FRANEK, and M. JIANG, *A d-step approach for distinct squares in strings*, Lecture Notes in Computer Science, Volume 6661 (2011) 77-89.

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline	Introduction	R-cover	Computation on distinct squares	Program	Future work
	00	0000	000	00	

THANK YOU!

● ▶ < ミ ▶

- < ≣ →