A *d*-step Approach for Distinct Squares in Strings

Mei Jiang Joint work with Antoine Deza and Frantisek Franek

Advanced Optimization Laboratory Department of Computing and Software McMaster University

March 8, 2011

A (1) > A (1) > A

- ∢ ⊒ ⊳

Outline	Introduction	(<i>d</i> , <i>n</i> – <i>d</i>) Table	Conjecture Reformulations	Relat. Short Square-Maximal Strings Struct.	Conclusions

- (2) (d, n d) Table
- 3 Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure

5 Conclusions

Outline	Introduction	(<i>d</i> , <i>n</i> – <i>d</i>) Table	Conjecture Reformulations	Relat. Short Square-Maximal Strings Struct.	Conclusions

- (d, n d) Table
- 3 Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure

5 Conclusions

・ 回 ・ ・ ヨ ・ ・ ヨ ・

э

- In 1998 Fraenkel and Simpson showed the number of distinct squares in a string of length *n* is bounded from above by 2*n* and gave a lower bound asymptomatically approaching *n* from below.
- In 2005 Ilie provided a simpler proof of Fraenkel and Simpson's main lemma and slightly improved the upper bound to $2n-\Theta(\log n)$ in 2007.
- It is believed, that the number of distinct squares is bounded by the length of the string.

d-step Approach

- We investigate the problem of distinct squares in relationship to the alphabet of the string.
- We construct a table whose rows are indexed by d and columns are indexed by n d with entries of $\sigma_d(n)$.
- We conjecture that the upper bound for the maximum number of primitively rooted distinct squares is n d.
- *d*-step approach was inspired by the techniques used for investigating the Hirsch bound for the maximum possible diameter over all *d*-dimensional polytopes with *n* facets.

Basic Notation

- A square is a repetition with power of 2, distinct squares means only the types of the squares are counted, primitively rooted distinct squares means the generator itself is not a repetition.
- A **run**, a maximal fractional primitively rooted repetition, is formed by a maximal repetition followed by a tail.
- **s(x)** denotes the number of primitively rooted distinct squares in a string *x*.
- $\sigma_d(n)$ denotes the maximum number of primitively rooted distinct squares over all strings of length *n* containing exactly *d* distinct symbols.
- A singleton refers to a symbol in a string that occurs exactly once, a **pair** occurs exactly twice, a **triple** occurs exactly three times, and in general an *k*-**tuple** (*k* times).

| 4 回 2 4 U = 2 4 U =

Outline	Introduction	(<i>d</i> , <i>n</i> – <i>d</i>) Table	Conjecture Reformulations	Relat. Short Square-Maximal Strings Struct.	Conclusions

- **2** (d, n d) Table
- 3 Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure

5 Conclusions

・日・ ・ヨ・ ・ヨ・

э

(d, n-d) Table Basic Properties

\setminus	n - d											
	$\overline{\ }$	1	2	3	4	5	6	7	8	9	10	
	1	1	1	1	1	1	1	1	1	1	1	
	2	1	2	2	3	3	4	5	6	7	7	
	3	1	2	3	3	4	4	5	6	7	8	
	4	1	2	3	4	4	5	5	6	7	8	
	5	1	2	3	4	5	5	6	6	7	8	
a	6	1	2	3	4	5	6	6	7	7	8	
	7	1	2	3	4	5	6	7	7	8	8	
	8	1	2	3	4	5	6	7	8	8	9	
	9	1	2	3	4	5	6	7	8	9	9	
	10	1	2	3	4	5	6	7	8	9	10	

(d, n-d) Table: $\sigma_d(n)$ with $1 \le d \le 10$ and $1 \le n - d \le 10$

For all $n \ge d \ge 2$: a) $\sigma_d(n) \le \sigma_d(n+1)$ b) $\sigma_d(n) \le \sigma_{d+1}(n+1)$ c) $\sigma_d(n) < \sigma_{d+1}(n+2)$ c) $\sigma_d(n) = \sigma_{d+1}(n+1)$ for $n \le 2d$ c) $\sigma_d(n) \ge n-d$ for $n \le 2d$ c) $\sigma_d(2d) - \sigma_{d-1}(2d-1) \le 1$

▲圖▶ ▲屋▶ ▲屋▶

Outline	Introduction	(<i>d</i> , <i>n</i> – <i>d</i>) Table	Conjecture Reformulations	Relat. Short Square-Maximal Strings Struct.	Conclusions

(d, n - d) Table

4 Relatively Short Square-Maximal Strings Structure

5 Conclusions

<回と < 目と < 目と

э

Theorem 1

Theorem 1

For all $n \ge d \ge 2$, $\sigma_d(n) \le n - d \iff \sigma_d(2d) = d$ for all $d \ge 2$

$\overline{\ }$		n-	d	
		 	d	
4				
u	d		d	
			d	
			d	

Proof.

- *n* < 2*d*, constant under the diagonal.
- *n* > 2*d*, smaller or equal than the diagonal value.

イロン イヨン イヨン イヨン

æ

Theorem 2

Theorem 2

For all $n \ge d \ge 2$, $\sigma_d(n) \le n - d \iff \sigma_d(2d+1) - \sigma_d(2d) \le 1$ for all $d \ge 2$

Proof.

$$\begin{array}{l} d \text{ is the least s.t. } \sigma_d(2d) > d. \\ \text{Remove the singleton,} \\ \sigma_{d-1}(2d-1) = \sigma_d(2d). \\ \sigma_d(2d) - \sigma_{d-1}(2d-2) \leq 1, \text{ and} \\ \sigma_{d-1}(2d-2) = d-1. \\ \text{Thus} \\ \sigma_d(2d) \leq d. \end{array}$$

(ロ) (同) (E) (E) (E)

Theorem 3

Theorem 3

For all
$$d \ge 2$$
, if $\sigma_d(2d+1) \le d$, then

$$\ \, \bullet \ \, \sigma_d(n) \leq n-d \ \, \text{for all} \ \, n\geq d\geq 2$$

$$\ \text{ or } a_d(n) \leq n - d - 1 \text{ for all } n > 2d \geq 4$$

$\overline{\ }$		n -	d		
		 d	d+1		
4	d	d	d		
u	d+1	d	d+1		
		d	d + 1	:	
		d	d + 1		

Proof.

•
$$\sigma_d(2d) = \sigma_d(2d+1) = d$$
.

n > 2d, smaller than the diagonal value.

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem 4

Theorem 4

For all
$$d \ge 2$$
, if $\sigma_d(2d) = \sigma_d(2d+1)$, then

$$\ \, \bullet \ \, \sigma_d(n) \leq n-d \ \, \text{for all} \ \, n\geq d\geq 2$$

2)
$$\sigma_d(n) \leq n - d - 1$$
 for all $n > 2d \geq 4$

$\overline{\ }$		n -	d		
	\searrow	 d-1	d		
		 _	"		
d	d-1	$\sigma_{d-1}(2d-2)$	$\sigma_{d-1}(2d-1)$	}≤1	
ŭ	d		$\sigma_d(2d)$	J	

Proof.

To show
$$\sigma_d(2d) = \sigma_d(2d+1) = d$$
.
 d is the least s.t. $\sigma_d(2d) > d$.
 $\sigma_d(2d) - \sigma_{d-1}(2d-1) \le 1$, and
 $\sigma_{d-1}(2d-1) = d - 1$. Thus
 $\sigma_d(2d) \le d$.

< ロ > < 回 > < 回 > < 回 > < 回 > <

Э

Outline	Introduction	(<i>d</i> , <i>n</i> – <i>d</i>) Table	Conjecture Reformulations	Relat. Short Square-Maximal Strings Struct.	Conclusions

- (d, n d) Table
- 3 Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure

5 Conclusions

伺い イヨト イヨト

Relatively Short Square-Maximal Strings Structure

- We investigate the structure of square-maximal strings on the main diagonal.
 - If σ_d(2d) = d then at least one of the square maximal string is in the form of *aabbccddeeff*...
 - If σ_d(2d) > d then the square maximal string is a counterexample. We investigate its structure and draw conclusions for counterexamples with n ≤ 4d.

A. Deza, F. Franek and M. Jiang

A *d*-step Approach for Distinct Squares in Strings

OutlineIntroduction(d, n - d) TableConjecture ReformulationsRelat. Short Square-Maximal Strings Struct.Conclusions000000000000000000

Pairs

Lemma 1

Let d is the least s.t. for some x, $s(x) = \sigma_d(2d) > d$. Then x does not contain a pair.

Proof.

The pair: $x[i_0] = x[i_1] = C$.

- Occurs in only one square. Replace the first *C* with a new symbol \hat{C} . $d-1 > \sigma_{d+1}(2d) > \sigma_d(2d)-1$.
- Occurs in a non-trivial run uvCwuvCwu. Remove wuvbetween C's. $d-k \ge \sigma_d(2d-k) \ge \sigma_d(2d)-k$, where k = |w|+|u|+|v|.

Triples

Lemma 2

Let *d* is the least s.t. for some *x*, $s(x) = \sigma_d(2d) > d$. Then *x* can only contain a triple $x[i_0] = x[i_1] = x[i_2] = C$ that satisfies:

- $x[i_0]$ and $x[i_1]$ occur in a run $r_1 = u_1v_1Cw_1u_1v_1Cw_1u_1$, where $|u_1| \ge 1$,
- ② $x[i_1]$ and $x[i_2]$ occur in a run $r_2 = u_2v_2Cw_2u_2v_2Cw_2u_2$, where $|u_2| \ge 1$, and where $i_1-i_0 \ne i_2-i_1$,
- either u₁v₁ is a proper suffix of u₂v₂, or w₂u₂ is a proper prefix of w₁u₁.

イロト イポト イラト イラト 一日

Triples (cont.)

Proof.

- $\begin{array}{rccc} r_{1}: & u_{1}v_{1}Cw_{1}u_{1}v_{1}Cw_{1}u_{1} \\ r_{2}: & u_{2}v_{2}Cw_{2}u_{2}v_{2}Cw_{2}u_{2} \end{array}$
- Show it is impossible to have only two symbols occur in a run.
- Show it is impossible to have three symbols occur in the same run.
- Show it is impossible to have both ends are "long".

П

3

- 4 同 6 4 日 6 4 日 6

OutlineIntroduction(d, n - d) TableConjecture ReformulationsRelat. Short Square-Maximal Strings Struct.Conclusions000000000000000000000000

Singletons Estimation

Lemma 3

Let *d* is the least s.t. for some *x*, $s(x) = \sigma_d(2d) > d$. Then *x* has at least $\lceil \frac{2d}{3} \rceil$ singletons.

Proof.

• Let u_1v_1 is a proper suffix of u_2v_2 , $a = u_1[0]$. a occurs at least 6 times in the r_1 and r_2 . We assign 5 *a*'s to the triple. It can be shown this assignment is mutually disjoint with others.

<i>r</i> ₁ :	$u_1v_1Cw_1u_1v_1Cw_1u_1$
r ₂ :	$u_2 v_2 C w_2 u_2 v_2 C w_2 u_2$

• *m*₀: the number of triples, *m*₁: the number of other multiply occurring symbols (at least 4 times), *m*₂: the number of singletons.

$$2d\geq 8m_0+4m_1+m_2$$
 $d\leq 2m_0+m_1+m_2$ Thus, $m_2\geq \lceil rac{2d}{3}
ceil$

Theorem 5

Theorem 5

For all $n \ge d \ge 2, \sigma_d(n) \le n - d \iff \sigma_d(4d) \le 3d$ for all $d \ge 2$

Proof.

 $\begin{array}{l} d \text{ is the least s.t. } \sigma_d(2d) > d.\\ \text{Remove } \lceil \frac{2d}{3} \rceil \text{ singletons.}\\ \sigma_{d'}(4d') \geq \sigma_d(2d) > d \text{ and}\\ 3d' = d. \text{ Thus, } \sigma_{d'}(4d') > 3d'. \quad \Box \end{array}$

・ロン ・回 と ・ 回 と ・ 回 と

Outline	Introduction	(<i>d</i> , <i>n</i> – <i>d</i>) Table	Conjecture Reformulations	Relat. Short Square-Maximal Strings Struct.	Conclusions

- Introduction
- (d, n d) Table
- 3 Conjecture Reformulations
- 4 Relatively Short Square-Maximal Strings Structure

<回と < 目と < 目と

э

Outline	Introduction	(<i>d</i> , <i>n</i> – <i>d</i>) Table	Conjecture Reformulations	Relat. Short Square-Maximal Strings Struct.	Conclusions

Conclusions

- We exhibit the usefulness of investigating the main diagonal of (d,n-d) table for tackling the conjectured upper bound.
 - To prove the conjecture by showing that the first counterexample has an impossible structure. i.e. it cannot contain an k-tuple, or if it contains an k-tuple, then it must contain another symbol with a frequency > k.
 - To disprove the conjecture by finding a counterexample on the diagonal.
- The Hirsch conjecture was recently disproved by Santos by exhibiting a violation on the diagonal with d = 20.
- Let's remark the techniques we used for "pushing up" the main diagonal can be applicable to the verification of the conjectured upper bound.

・ロト ・回ト ・ヨト ・ヨト

Outline	Introduction	(<i>d</i> , <i>n</i> – <i>d</i>) Table	Conjecture Reformulations	Relat. Short Square-Maximal Strings Struct.	Conclusions

References

- A. S. FRAENKEL and J. SIMPSON, *How Many Squares Can a String Contain?*, Journal of Combinatorial Theory Series A, 82, 1 (1998), 112-120.
- L. ILIE, A simple proof that a word of length n has at most 2n distinct squares, Journal of Combinatorial Theory Series A, 112, 1 (2005) 163-164.
- L. ILIE, A note on the number of squares in a word, Theoretical Computer Science, 380, 3 (2007), 373-376.
- F. SANTOS, A counterexample to the Hirsch conjecture, arXiv:1006.2814v1 (2010).
- A. DEZA, F. FRANEK, and M. JIANG, *A d-step approach for distinct squares in strings*, AdvOL Technical Report 2011/01, Dept. of Computing and Software, McMaster University, Canada.

Outline	Introduction	(<i>d</i> , <i>n</i> – <i>d</i>) Table	Conjecture Reformulations	Relat. Short Square-Maximal Strings Struct.	Conclusions

THANK YOU!

æ

∢ ≣⇒