A d-step Approach for Distinct Squares in Strings

Mei Jiang
Joint work with Antoine Deza and Frantisek Franek

Advanced Optimization Laboratory
Department of Computing and Software
McMaster University

March 8, 2011

Outline

(1) Introduction
(2) $(d, n-d)$ Table
(3) Conjecture Reformulations
(4) Relatively Short Square-Maximal Strings Structure
(5) Conclusions
ooo o

Outline

(1) Introduction

(3) Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure
(5) Conclusions

A. Deza, F. Franek and M. Jiang

A d-step Approach for Distinct Squares in Strings

Background

- In 1998 Fraenkel and Simpson showed the number of distinct squares in a string of length n is bounded from above by $2 n$ and gave a lower bound asymptomatically approaching n from below.
- In 2005 Ilie provided a simpler proof of Fraenkel and Simpson's main lemma and slightly improved the upper bound to $2 n-\Theta(\log n)$ in 2007.
- It is believed, that the number of distinct squares is bounded by the length of the string.

d-step Approach

- We investigate the problem of distinct squares in relationship to the alphabet of the string.
- We construct a table whose rows are indexed by d and columns are indexed by $n-d$ with entries of $\sigma_{d}(n)$.
- We conjecture that the upper bound for the maximum number of primitively rooted distinct squares is $n-d$.
- d-step approach was inspired by the techniques used for investigating the Hirsch bound for the maximum possible diameter over all d-dimensional polytopes with n facets.

Basic Notation

- A square is a repetition with power of 2 , distinct squares means only the types of the squares are counted, primitively rooted distinct squares means the generator itself is not a repetition.
- A run, a maximal fractional primitively rooted repetition, is formed by a maximal repetition followed by a tail.
- $\mathbf{s}(\mathbf{x})$ denotes the number of primitively rooted distinct squares in a string x.
- $\sigma_{\mathbf{d}}(\mathbf{n})$ denotes the maximum number of primitively rooted distinct squares over all strings of length n containing exactly d distinct symbols.
- A singleton refers to a symbol in a string that occurs exactly once, a pair occurs exactly twice, a triple occurs exactly three times, and in general an k-tuple (k times).

Outline

(1) Introduction

(2) $(d, n-d)$ Table

(3) Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure
(5) Conclusions

A. Deza, F. Franek and M. Jiang

(d,n-d) Table Basic Properties

$\boldsymbol{n} \boldsymbol{1}$													$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	\ldots
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1	1	1	1	1	\ldots											
$\mathbf{2}$	1	$\mathbf{2}$	$\mathbf{2}$	3	3	4	5	6	7	7	\ldots											
$\mathbf{3}$	1	2	$\mathbf{3}$	$\mathbf{3}$	4	4	5	6	7	8	\ldots											
$\mathbf{4}$	1	2	3	$\mathbf{4}$	$\mathbf{4}$	5	5	6	7	8	\ldots											
$\mathbf{5}$	1	2	3	4	$\mathbf{5}$	$\mathbf{5}$	6	6	7	8	\ldots											
$\mathbf{6}$	1	2	3	4	5	$\mathbf{6}$	$\mathbf{6}$	7	7	8	\ldots											
$\mathbf{7}$	1	2	3	4	5	6	$\mathbf{7}$	$\mathbf{7}$	8	8	\ldots											
$\mathbf{8}$	1	2	3	4	5	6	7	$\mathbf{8}$	$\mathbf{8}$	9	\ldots											
$\mathbf{9}$	1	2	3	4	5	6	7	8	$\mathbf{9}$	9	\ldots											
$\mathbf{1 0}$	1	2	3	4	5	6	7	8	9	$\mathbf{1 0}$	\ldots											
\ldots																						

For all $n \geq d \geq 2$:
(1) $\sigma_{d}(n) \leq \sigma_{d}(n+1)$
(2) $\sigma_{d}(n) \leq \sigma_{d+1}(n+1)$
(3) $\sigma_{d}(n)<\sigma_{d+1}(n+2)$
(9) $\sigma_{d}(n)=\sigma_{d+1}(n+1)$ for $n \leq 2 d$
(5) $\sigma_{d}(n) \geq n-d$ for $n \leq 2 d$
(0) $\sigma_{d}(2 d)-\sigma_{d-1}(2 d-1) \leq 1$
(d, $n-d$) Table: $\sigma_{d}(n)$ with $1 \leq d \leq 10$ and $1 \leq n-d \leq 10$

Outline

(1) Introduction

(3) Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure
(5) Conclusions

A. Deza, F. Franek and M. Jiang

A d-step Approach for Distinct Squares in Strings

Theorem 1

For all $n \geq d \geq 2, \sigma_{d}(n) \leq n-d \Longleftrightarrow \sigma_{d}(2 d)=d$ for all $d \geq 2$

	$n-d$					
		\cdots	...	d	...	\ldots
				
			
	d			d		
	...			d	...	
	...			d		..

Proof.

- $n<2 d$, constant under the diagonal.
- $n>2 d$, smaller or equal than the diagonal value.

Theorem 2

Theorem 2

For all $n \geq d \geq 2, \sigma_{d}(n) \leq n-d \Longleftrightarrow \sigma_{d}(2 d+1)-\sigma_{d}(2 d) \leq 1$ for all $d \geq 2$

d	\boldsymbol{n}-d					
		...	d-1	d
	...	\ldots				
	d-1		$\sigma_{d-1}(2 d-2)$	$\sigma_{d-1}(2 d-1)$	$\}=$	
	d		≤ 1	$\sigma_{d}(2 d)$)	
	...				\ldots	
	...					\ldots

Proof.

d is the least s.t. $\sigma_{d}(2 d)>d$.
Remove the singleton, $\sigma_{d-1}(2 d-1)=\sigma_{d}(2 d)$.
$\sigma_{d}(2 d)-\sigma_{d-1}(2 d-2) \leq 1$, and
$\sigma_{d-1}(2 d-2)=d-1$. Thus
$\sigma_{d}(2 d) \leq d$.
A. Deza, F. Franek and M. Jiang

A d-step Approach for Distinct Squares in Strings

Theorem 3

Theorem 3

For all $d \geq 2$, if $\sigma_{d}(2 d+1) \leq d$, then
(1) $\sigma_{d}(n) \leq n-d$ for all $n \geq d \geq 2$
(2) $\sigma_{d}(n) \leq n-d-1$ for all $n>2 d \geq 4$

$\boldsymbol{n}-\boldsymbol{d}$						
\boldsymbol{d}	\ldots	\boldsymbol{d}	$\boldsymbol{d}+\boldsymbol{1}$	\ldots	\ldots	
\ldots	\ldots					
\boldsymbol{d}		\boldsymbol{d}	d			
$\boldsymbol{d}+\boldsymbol{1}$		d	$\boldsymbol{d}+\mathbf{1}$			
\ldots		d	$d+1$	\ldots		
\ldots		d	$d+1$		\ldots	

Proof.

- $\sigma_{d}(2 d)=\sigma_{d}(2 d+1)=d$.
- $n>2 d$, smaller than the diagonal value.

Theorem 4

Theorem 4

For all $d \geq 2$, if $\sigma_{d}(2 d)=\sigma_{d}(2 d+1)$, then
(1) $\sigma_{d}(n) \leq n-d$ for all $n \geq d \geq 2$
(2) $\sigma_{d}(n) \leq n-d-1$ for all $n>2 d \geq 4$

	\boldsymbol{n}-d					
		...	d-1	d
	...	\ldots		$\underbrace{\text { E }}$		
	d-1		$\sigma_{d-1}(2 d-2)$	$\sigma_{d-1}(2 d-1)$	$\} \leq 1$	
	d			$\sigma_{d}(2 d)$		
	...				\ldots	
	...					\ldots

Proof.

To show $\sigma_{d}(2 d)=\sigma_{d}(2 d+1)=d$. d is the least s.t. $\sigma_{d}(2 d)>d$. $\sigma_{d}(2 d)-\sigma_{d-1}(2 d-1) \leq 1$, and $\sigma_{d-1}(2 d-1)=d-1$. Thus $\sigma_{d}(2 d) \leq d$.

A d-step Approach for Distinct Squares in Strings

Outline

(3) Conjecture Reformulations
(4) Relatively Short Square-Maximal Strings Structure
(5) Conclusions

Relatively Short Square-Maximal Strings Structure

- We investigate the structure of square-maximal strings on the main diagonal.
- If $\sigma_{d}(2 d)=d$ then at least one of the square maximal string is in the form of aabbccddeeff...
- If $\sigma_{d}(2 d)>d$ then the square maximal string is a counterexample. We investigate its structure and draw conclusions for counterexamples with $n \leq 4 d$.

A. Deza, F. Franek and M. Jiang

A d-step Approach for Distinct Squares in Strings

Pairs

Lemma 1

Let d is the least s.t. for some $x, s(x)=\sigma_{d}(2 d)>d$. Then x does not contain a pair.

Proof.

The pair: $x\left[i_{0}\right]=x\left[i_{1}\right]=C$.

- Occurs in only one square. Replace the first C with a new symbol \hat{C}.
$d-1 \geq \sigma_{d+1}(2 d) \geq \sigma_{d}(2 d)-1$.
- Occurs in a non-trivial run uvCwuvCwu. Remove wuv between C's.
$d-k \geq \sigma_{d}(2 d-k) \geq \sigma_{d}(2 d)-k$, where $k=|w|+|u|+|v|$.

Triples

Lemma 2

Let d is the least s.t. for some $x, s(x)=\sigma_{d}(2 d)>d$. Then x can only contain a triple $x\left[i_{0}\right]=x\left[i_{1}\right]=x\left[i_{2}\right]=C$ that satisfies:
(1) $x\left[i_{0}\right]$ and $x\left[i_{1}\right]$ occur in a run $r_{1}=u_{1} v_{1} C w_{1} u_{1} v_{1} C w_{1} u_{1}$, where $\left|u_{1}\right| \geq 1$,
(2) $x\left[i_{1}\right]$ and $x\left[i_{2}\right]$ occur in a run $r_{2}=u_{2} v_{2} C w_{2} u_{2} v_{2} C w_{2} u_{2}$, where $\left|u_{2}\right| \geq 1$, and where $i_{1}-i_{0} \neq i_{2}-i_{1}$,
(3) either $u_{1} v_{1}$ is a proper suffix of $u_{2} v_{2}$, or $w_{2} u_{2}$ is a proper prefix of $w_{1} u_{1}$.

Triples (cont.)

Proof.

$$
\begin{array}{ll}
r_{1}: & u_{1} v_{1} C w_{1} u_{1} v_{1} C w_{1} u_{1} \\
r_{2}: & u_{2} v_{2} C w_{2} u_{2} v_{2} C w_{2} u_{2}
\end{array}
$$

- Show it is impossible to have only two symbols occur in a run.
- Show it is impossible to have three symbols occur in the same run.
- Show it is impossible to have both ends are "long".

Singletons Estimation

Lemma 3

Let d is the least s.t. for some $x, s(x)=\sigma_{d}(2 d)>d$. Then x has at least $\left\lceil\frac{2 d}{3}\right\rceil$ singletons.

Proof.

- Let $u_{1} v_{1}$ is a proper suffix of $u_{2} v_{2}, a=u_{1}[0]$. a occurs at least 6 times in the r_{1} and r_{2}. We assign 5 a's to the triple. It can be shown this assignment is mutually disjoint with others.

$$
\begin{array}{lr}
r_{1}: & \dot{u_{1}} \dot{v}_{1} C w_{1} \dot{u}_{1} \dot{v}_{1} C w_{1} u_{1} \\
r_{2}: & u_{2} v_{2} C w_{2} u_{2} v_{2} C w_{2} u_{2}
\end{array}
$$

- m_{0} : the number of triples, m_{1} : the number of other multiply occurring symbols (at least 4 times), m_{2} : the number of singletons.

$$
\begin{aligned}
& 2 d \geq 8 m_{0}+4 m_{1}+m_{2} \\
& d \leq 2 m_{0}+m_{1}+m_{2}
\end{aligned}
$$

Thus, $m_{2} \geq\left\lceil\frac{2 d}{3}\right\rceil$

Theorem 5

Theorem 5

For all $n \geq d \geq 2, \sigma_{d}(n) \leq n-d \Longleftrightarrow \sigma_{d}(4 d) \leq 3 d$ for all $d \geq 2$

	\boldsymbol{n}-d							
		...	\cdots	d
	..					\cdots		
	...					$\sigma_{d^{\prime}}\left(4 d^{\prime}\right)$	4	
d	$\left\lceil\frac{2 d}{3}\right\rceil$	
		
	d					$\sigma_{d}(2 d)$		
	...							
	\cdots							

Proof.

d is the least s.t. $\sigma_{d}(2 d)>d$. Remove $\left\lceil\frac{2 d}{3}\right\rceil$ singletons.
$\sigma_{d^{\prime}}\left(4 d^{\prime}\right) \geq \sigma_{d}(2 d)>d$ and $3 d^{\prime}=d$. Thus, $\sigma_{d^{\prime}}\left(4 d^{\prime}\right)>3 d^{\prime}$.

Outline

(1) Introduction

(3) Conjecture Reformulations

4 Relatively Short Square-Maximal Strings Structure
(5) Conclusions
A. Deza, F. Franek and M. Jiang

A d-step Approach for Distinct Squares in Strings

Conclusions

- We exhibit the usefulness of investigating the main diagonal of ($d, n-d$) table for tackling the conjectured upper bound.
- To prove the conjecture by showing that the first counterexample has an impossible structure. i.e. it cannot contain an k-tuple, or if it contains an k-tuple, then it must contain another symbol with a frequency $>k$.
- To disprove the conjecture by finding a counterexample on the diagonal.
- The Hirsch conjecture was recently disproved by Santos by exhibiting a violation on the diagonal with $d=20$.
- Let's remark the techniques we used for "pushing up" the main diagonal can be applicable to the verification of the conjectured upper bound.

References

䍰 A．S．Fraenkel and J．Simpson，How Many Squares Can a String Contain？，Journal of Combinatorial Theory Series A，82， 1 （1998），112－120．
（ L．LLie，A simple proof that a word of length n has at most $2 n$ distinct squares，Journal of Combinatorial Theory Series A， 112， 1 （2005）163－164．
囲 L．Ilie，A note on the number of squares in a word， Theoretical Computer Science，380， 3 （2007），373－376．
目 F．Santos，A counterexample to the Hirsch conjecture， arXiv：1006．2814v1（2010）．
囯 A．Deza，F．Franek，and M．Jiang，A d－step approach for distinct squares in strings，AdvOL Technical Report 2011／01，Dept．of Computing and Software，McMaster University，Canada．

$\mathcal{T H A N K} \mathcal{Y O U}$!

A. Deza, F. Franek and M. Jiang

