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Background

In 1998 Fraenkel and Simpson showed the number of distinct
squares in a string of length n is bounded from above by 2n
and gave a lower bound asymptomatically approaching n from
below.

In 2005 Ilie provided a simpler proof of Fraenkel and Simp-
son’s main lemma and slightly improved the upper bound to
2n−Θ(log n) in 2007.

It is believed, that the number of distinct squares is bounded
by the length of the string.
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d-step Approach

We investigate the problem of distinct squares in relationship
to the alphabet of the string.

We construct a table whose rows are indexed by d and columns
are indexed by n − d with entries of σd(n).

We conjecture that the upper bound for the maximum number
of primitively rooted distinct squares is n − d .

d-step approach was inspired by the techniques used for inves-
tigating the Hirsch bound for the maximum possible diameter
over all d-dimensional polytopes with n facets.
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Basic Notation

A square is a repetition with power of 2, distinct squares
means only the types of the squares are counted, primitively
rooted distinct squares means the generator itself is not a
repetition.

A run, a maximal fractional primitively rooted repetition, is
formed by a maximal repetition followed by a tail.

s(x) denotes the number of primitively rooted distinct squares
in a string x .

σd(n) denotes the maximum number of primitively rooted dis-
tinct squares over all strings of length n containing exactly d
distinct symbols.

A singleton refers to a symbol in a string that occurs exactly
once, a pair occurs exactly twice, a triple occurs exactly three
times, and in general an k-tuple (k times).
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(d,n-d) Table Basic Properties

 n - d 

d 

 1 2 3 4 5 6 7 8 9 10 … 

1 1 1 1 1 1 1 1 1 1 1 … 

2 1 2 2 3 3 4 5 6 7 7 … 

3 1 2 3 3 4 4 5 6 7 8 … 

4 1 2 3 4 4 5 5 6 7 8 … 

5 1 2 3 4 5 5 6 6 7 8 … 

6 1 2 3 4 5 6 6 7 7 8 … 

7 1 2 3 4 5 6 7 7 8 8 … 

8 1 2 3 4 5 6 7 8 8 9 … 

9 1 2 3 4 5 6 7 8 9 9 … 

10 1 2 3 4 5 6 7 8 9 10 … 

… … … … … … … … … … … … 

(d, n-d) Table: 𝜎𝑑(𝑛) with 1 ≤ 𝑑 ≤ 10 and 1 ≤ 𝑛 − 𝑑 ≤ 10 

For all n ≥ d ≥ 2:

1 σd(n) ≤ σd(n+1)

2 σd(n) ≤ σd+1(n+1)

3 σd(n) < σd+1(n+2)

4 σd(n) = σd+1(n+1) for
n ≤ 2d

5 σd(n) ≥ n−d for n ≤ 2d

6 σd(2d)−σd−1(2d−1) ≤ 1
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Theorem 1

Theorem 1

For all n ≥ d ≥ 2, σd(n) ≤ n − d ⇐⇒ σd(2d) = d for all d ≥ 2

 n - d 

d 

 … … d … … 

… …     

…  …    

d       

…     …  

…      … 

 

Proof.

n < 2d , constant under the
diagonal.

n > 2d , smaller or equal than
the diagonal value.

2

A. Deza, F. Franek and M. Jiang A d-step Approach for Distinct Squares in Strings



Outline Introduction (d, n − d) Table Conjecture Reformulations Relat. Short Square-Maximal Strings Struct. Conclusions

Theorem 2

Theorem 2

For all n ≥ d ≥ 2, σd(n) ≤ n − d ⇐⇒ σd(2d+1)− σd(2d) ≤ 1 for
all d ≥ 2

 n - d 

d 

 … d-1 d … … 

… …     

d-1                          

d            

…    …  

…     … 

 

 

= 

≤1 

Proof.

d is the least s.t. σd(2d) > d .
Remove the singleton,
σd−1(2d − 1) = σd(2d).
σd(2d)− σd−1(2d − 2) ≤ 1, and
σd−1(2d−2) = d − 1. Thus
σd(2d) ≤ d . 2
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Theorem 3

Theorem 3

For all d ≥ 2, if σd(2d+1) ≤ d , then

1 σd(n) ≤ n−d for all n ≥ d ≥ 2

2 σd(n) ≤ n−d−1 for all n > 2d ≥ 4

 n - d 

d 

 … d d+1 … … 

… …     

d        

d+1          

…        …  

…         … 

 

Proof.

σd(2d) = σd(2d+1) = d .

n > 2d , smaller than the
diagonal value.

2

A. Deza, F. Franek and M. Jiang A d-step Approach for Distinct Squares in Strings



Outline Introduction (d, n − d) Table Conjecture Reformulations Relat. Short Square-Maximal Strings Struct. Conclusions

Theorem 4

Theorem 4

For all d ≥ 2, if σd(2d) = σd(2d+1), then

1 σd(n) ≤ n−d for all n ≥ d ≥ 2

2 σd(n) ≤ n−d−1 for all n > 2d ≥ 4

 n - d 

d 

 … d-1 d … … 

… …     

d-1                          

d            

…    …  

…     … 

 

 

≤1 

= 

Proof.

To show σd(2d) = σd(2d+1) = d .
d is the least s.t. σd(2d) > d .
σd(2d)− σd−1(2d − 1) ≤ 1, and
σd−1(2d−1) = d − 1. Thus
σd(2d) ≤ d . 2
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Relatively Short Square-Maximal Strings Structure

We investigate the structure of square-maximal strings on the main
diagonal.

If σd(2d) = d then at least one of the square maximal string is
in the form of aabbccddeeff ...
If σd(2d) > d then the square maximal string is a
counterexample. We investigate its structure and draw
conclusions for counterexamples with n ≤ 4d .

 

 

 

 

 

 

   n - d 

d 

 … … … … d … … 

…     …   

…               

…     …   

…     …   

d              

…        

…        
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Pairs

Lemma 1

Let d is the least s.t. for some x , s(x) = σd(2d) > d . Then x
does not contain a pair.

 n - d 

d 

 … … d … … 

… …     

…  …    

d            

…    …  

…     … 

 

Proof.

The pair: x [i0] = x [i1] = C .

Occurs in only one square.
Replace the first C with a new
symbol Ĉ .
d − 1 ≥ σd+1(2d) ≥ σd(2d)−1.

Occurs in a non-trivial run
uvCwuvCwu. Remove wuv
between C ’s.
d−k ≥ σd(2d−k) ≥ σd(2d)−k,
where k = |w |+|u|+|v |.

2
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Triples

Lemma 2

Let d is the least s.t. for some x , s(x) = σd(2d) > d . Then x can
only contain a triple x [i0] = x [i1] = x [i2] = C that satisfies:

1 x [i0] and x [i1] occur in a run r1 = u1v1Cw1u1v1Cw1u1, where
|u1| ≥ 1,

2 x [i1] and x [i2] occur in a run r2 = u2v2Cw2u2v2Cw2u2, where
|u2| ≥ 1, and where i1−i0 6= i2−i1,

3 either u1v1 is a proper suffix of u2v2, or w2u2 is a proper
prefix of w1u1.

A. Deza, F. Franek and M. Jiang A d-step Approach for Distinct Squares in Strings
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Triples (cont.)

Proof.

r1 : u1v1Cw1u1v1Cw1u1

r2 : u2v2Cw2u2v2C w2u2

Show it is impossible to have only two symbols occur in a run.

Show it is impossible to have three symbols occur in the same run.

Show it is impossible to have both ends are “long”.

2
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Singletons Estimation

Lemma 3

Let d is the least s.t. for some x , s(x) = σd(2d) > d . Then x has at
least d 2d3 e singletons.

Proof.

Let u1v1 is a proper suffix of u2v2, a = u1[0]. a occurs at least 6 times in
the r1 and r2. We assign 5 a’s to the triple. It can be shown this
assignment is mutually disjoint with others.

· · · ·
r1 : u1v1Cw1u1v1Cw1u1

r2 : u2v2Cw2u2v2Cw2u2
· ·

m0: the number of triples, m1: the number of other multiply occurring
symbols (at least 4 times), m2: the number of singletons.

2d ≥ 8m0+4m1+m2

d ≤ 2m0+m1+m2

Thus, m2 ≥ d 2d3 e

2A. Deza, F. Franek and M. Jiang A d-step Approach for Distinct Squares in Strings
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Theorem 5

Theorem 5

For all n ≥ d ≥ 2, σd(n) ≤ n − d ⇐⇒ σd(4d) ≤ 3d for all d ≥ 2

 

 

 

 

 

 

   n - d 

d 

 … … … … d … … 

…     …   

…                

…     …  
  

 
   

…     …   

d              

…        

…        

Proof.

d is the least s.t. σd(2d) > d .
Remove d 2d3 e singletons.
σd′(4d ′) ≥ σd(2d) > d and
3d ′ = d . Thus, σd′(4d ′) > 3d ′. 2
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Conclusions

We exhibit the usefulness of investigating the main diagonal of
(d,n-d) table for tackling the conjectured upper bound.

To prove the conjecture by showing that the first counterex-
ample has an impossible structure. i.e. it cannot contain an
k-tuple, or if it contains an k-tuple, then it must contain an-
other symbol with a frequency > k .
To disprove the conjecture by finding a counterexample on the
diagonal.

The Hirsch conjecture was recently disproved by Santos by ex-
hibiting a violation on the diagonal with d = 20.

Let’s remark the techniques we used for “pushing up” the main
diagonal can be applicable to the verification of the conjectured
upper bound.
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T HANK YOU !
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