Revising Crochemore's Repetitions Algorithm to Compute Runs in a String
 Mei Jiang

Department of Computing and Software
McMaster University March 5 ${ }^{\text {th }} 2009$

Outline

- Introduction
- Some Basic Definitions
- repeat/repetition
- run
- Crochemore's Repetitions Algorithm
- Revising Crochemore's Algorithm to Compute Runs
- Work in Progress

Introduction

- A string is a sequence of "letters" (symbols) drawn from some (finite or infinite) "alphabet" (set) [1]. i.e. a word, a text file, a DNA sequence, etc.
- The stringology is a science of algorithms on strings . There are many areas that utilize the results of the stringology such as information retrieval, DNA processing, etc.
- Repetition problem has been significantly used in many different fields, such as data mining, pattern-matching, data compression, and computational biology, etc.
- In today's talk, we will be focusing on the algorithm that computes all the repetitions in a string.

Definition - Repeat/Repetition

- Repeat: a collection of identical repeating substrings.
- Repetition: adjacent repeats, no overlap, no spilt.
- Left Extendible (LE), Right Extendible (RE), Non Extendible (NE).

$$
f=\underbrace{\left.\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{a} & \begin{array}{llll}
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{a} \\
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} \\
\mathrm{a}
\end{array} & \underbrace{2} & &
\end{array}\right]}_{\substack{\text { generator } \\
\text { (must be irreducible) }}}
$$

- Encoded as (s, l, p)
- s : starting position of the repetition
- l: length of the generator, period
- p : power of the repetition , exponent ($\mathrm{p} \geq 2$)
i.e. $(0,1,2)(0,3,2)(1,3,2)$

Definition - Run

- Introduced by Main (1989), also called "Maximal Periodicity" [2].
- Represent repetitions, in a more compact way.
- Computing all the runs specifies all the repetitions in a string.

- Encoded as (s, l, p, t)
- s : starting position of the repetition
- l: length of the generator, period
- p : power of the repetition, exponent $(\mathrm{p} \geq 2)$
- t : length of the tail
i.e. $(1,3,2,2)$ is equivalent to $(1,3,2)(2,3,2)(3,3,2)$

Crochemore's Repetitions Algorithm

- 1981 Crochemore designed the first $O(n \log n)$ algorithm to compute all the repetitions in a string [3].
- The main ideas of this approach is to successively refine the indices of the string into equivalent classes.
- We define two indices at level l are equivalent if two identical substring of length l start there.
- i.e. $f=a b c a b\{0,3\}_{a b}$ at level 2

Crochemore's Repetitions

Algorithm - Example

Revising Crochemore's Algorithm to

Compute Runs

- The main approach is to combine the repetitions into runs.
- At each level of refinement, we build a binary search tree base on the starting position of the repetitions to collect the runs.
- Every repetition is rewritten in form of run and initialized with tail size of zero.
- i.e. $(0,3,2)$ is equivalent to $(0,3,2, o)$
- At each level, when a new repetition is computed, we traverse the tree to find a run to join:
- If find, join the run
- If not, insert it into the tree

Revising Crochemore's Algorithm to

 Compute Runs - Example$f=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| c | d | c | d | c | a | b | a | b | c | d | c | d |

Repetitions at level 2: $(5,2,2)(9,2,2)(0,2,2)(1,2,2)$

Revising Crochemore's Algorithm to Compute Runs - Implementation

i.e. $(7,2,2,1)$ with left child ($0,2,3,0$) and right child ($15,2,4,1$)

Work in Progress

- Implementation of revised algorithm is based on Franek E Smyth E Xiao's FSXıo (2003) approach of Crochemore's repetitions algorithm [4].
- In 2007 Chen \mathcal{E} Puglisi \mathcal{E} Smyth showed a collection of fast and space efficient algorithms (CPS) to compute runs [5].
- Testing above two algorithms on a set of various strings to get an overview of their performance and possibly memory usage comparison.
- Testing data includes the sample strings from:
- DNA, English, Fibonacci, periodic, protein, random

References

1. Bill Smyth, Computing Patterns in Strings, Pearson Addison-Wesley (2003), 423 pp.
2. Michael G. Main, Detecting leftmost maximal periodicities, Discrete Applied Maths. 25 (1989) 145-153.
3. Maxime Crochemore, An optimal algorithm for computing the repetitions in a word, Inform. Process. Lett. 12-5 (1981) 244-250.
4. Frantisek Franek\& W. F. Smyth\&Xiangdong Xiao, A note on Crochemore's repetitions algorithm - a fast spaceefficient approach, Nordic Journal of Computing 10 (2003) 21-28.
5. Gang Chen\& Simon J. Puglisi\&W. F. Smyth, Fast and Practical Algorithms for Computing All the Runs in a String, Lecture Notes in Computer Science (2007) 307-315.

Thank you!

