
Mei Jiang

Department of Computing and Software
McMaster University

March 5th, 2009

Outline
 Introduction
 Some Basic Definitions

 repeat/repetition
 run

 Crochemore’s Repetitions Algorithm
 Revising Crochemore’s Algorithm to Compute Runs
 Work in Progress

3/05/2009 2

Introduction
 A string is a sequence of “letters” (symbols) drawn from

some (finite or infinite) “alphabet” (set) [1].
i.e. a word, a text file, a DNA sequence, etc.

 The stringology is a science of algorithms on strings . There
are many areas that utilize the results of the stringology
such as information retrieval, DNA processing, etc.

 Repetition problem has been significantly used in many
different fields, such as data mining, pattern-matching,
data compression, and computational biology, etc.

 In today’s talk, we will be focusing on the algorithm that
computes all the repetitions in a string.

3/05/2009 3

Definition - Repeat/Repetition
 Repeat: a collection of identical repeating substrings.
 Repetition: adjacent repeats, no overlap, no spilt.
 Left Extendible (LE), Right Extendible (RE), Non Extendible (NE).

0 1 2 3 4 5 6 7 8
f = a a b a a b a b a

generator
(must be irreducible)

 Encoded as (s, l, p)
 s: starting position of the repetition
 l: length of the generator, period
 p: power of the repetition , exponent (p ≥ 2)

i.e. (0, 1, 2) (0, 3, 2) (1, 3, 2)

3/05/2009 4

Definition - Run
 Introduced by Main (1989), also called “Maximal Periodicity” [2].
 Represent repetitions, in a more compact way.
 Computing all the runs specifies all the repetitions in a string.

0 1 2 3 4 5 6 7 8 9
f = a a a b a a b a a a

Non LE generator tail Non RE
(proper prefix of generator)

 Encoded as (s, l, p, t)
 s: starting position of the repetition
 l: length of the generator, period
 p: power of the repetition, exponent (p ≥ 2)
 t: length of the tail
i.e. (1, 3, 2, 2) is equivalent to (1, 3, 2) (2, 3, 2) (3, 3, 2)

3/05/2009 5

Crochemore’s Repetitions Algorithm
 1981 Crochemore designed the first O(n log n)

algorithm to compute all the repetitions in a string [3].
 The main ideas of this approach is to successively

refine the indices of the string into equivalent classes.
 We define two indices at level l are equivalent if two

identical substring of length l start there.
 i.e. f = abcab {0, 3}ab at level 2

3/05/2009 6

Crochemore’s Repetitions
Algorithm - Example

3/05/2009 7

Revising Crochemore’s Algorithm to
Compute Runs
 The main approach is to combine the repetitions into runs.
 At each level of refinement, we build a binary search tree

base on the starting position of the repetitions to collect
the runs.

 Every repetition is rewritten in form of run and initialized
with tail size of zero.
 i.e. (0, 3, 2) is equivalent to (0, 3, 2, 0)

 At each level, when a new repetition is computed, we
traverse the tree to find a run to join:
 If find, join the run
 If not, insert it into the tree

3/05/2009 8

Revising Crochemore’s Algorithm to
Compute Runs - Example

0 1 2 3 4 5 6 7 8 9 10 11 12

f = c d c d c a b a b c d c d
Repetitions at level 2: (5, 2, 2) (9, 2, 2) (0, 2, 2) (1, 2, 2)

3/05/2009 9

(5, 2, 2, 0)

(0, 2, 2, 1) (9, 2, 2, 0)

(5, 2, 2, 0) (5, 2, 2, 0)

(9, 2, 2, 0)

(5, 2, 2, 0)

(0, 2, 2, 0) (9, 2, 2, 0)

Revising Crochemore’s Algorithm to
Compute Runs - Implementation

Run_Left

Run_Right

Run_s

Run_l

Run_p

Run_t

i.e. (7, 2, 2, 1) with left child (0, 2, 3, 0) and right child (15, 2, 4, 1)

3/05/2009 10

7 0 15

0 2 7

2 3 4

6

1 0 1

0 1 2 3 4 5 6 7 8 9 n-1

4

Work in Progress
 Implementation of revised algorithm is based on

Franek & Smyth & Xiao’s FSX10 (2003) approach of
Crochemore’s repetitions algorithm [4].

 In 2007 Chen & Puglisi & Smyth showed a collection of
fast and space efficient algorithms (CPS) to compute
runs [5].

 Testing above two algorithms on a set of various strings
to get an overview of their performance and possibly
memory usage comparison.
 Testing data includes the sample strings from:

 DNA, English, Fibonacci, periodic, protein, random

3/05/2009 11

References
1. Bill Smyth, Computing Patterns in Strings, Pearson

Addison-Wesley (2003), 423 pp.
2. Michael G. Main, Detecting leftmost maximal

periodicities, Discrete Applied Maths. 25 (1989) 145–153.
3. Maxime Crochemore, An optimal algorithm for computing

the repetitions in a word, Inform. Process. Lett. 12–5 (1981)
244–250.

4. Frantisek Franek& W. F. Smyth&Xiangdong Xiao, A note on
Crochemore's repetitions algorithm - a fast space-
efficient approach, Nordic Journal of Computing 10 (2003)
21–28.

5. Gang Chen& Simon J. Puglisi&W. F. Smyth, Fast and
Practical Algorithms for Computing All the Runs in a
String, Lecture Notes in Computer Science (2007) 307 - 315.

3/05/2009 12

Thank you!

3/05/2009 13

	Revising Crochemore's Repetitions Algorithm to Compute Runs in a String
	Outline
	Introduction
	Definition - Repeat/Repetition
	Definition - Run
	Crochemore’s Repetitions Algorithm
	Crochemore’s Repetitions Algorithm - Example
	Revising Crochemore’s Algorithm to Compute Runs
	Revising Crochemore’s Algorithm to Compute Runs - Example
	Revising Crochemore’s Algorithm to Compute Runs - Implementation
	Work in Progress
	References
	Thank you!

