
Mei Jiang

Department of Computing and Software
McMaster University

March 5th, 2009

Outline
 Introduction
 Some Basic Definitions

 repeat/repetition
 run

 Crochemore’s Repetitions Algorithm
 Revising Crochemore’s Algorithm to Compute Runs
 Work in Progress

3/05/2009 2

Introduction
 A string is a sequence of “letters” (symbols) drawn from

some (finite or infinite) “alphabet” (set) [1].
i.e. a word, a text file, a DNA sequence, etc.

 The stringology is a science of algorithms on strings . There
are many areas that utilize the results of the stringology
such as information retrieval, DNA processing, etc.

 Repetition problem has been significantly used in many
different fields, such as data mining, pattern-matching,
data compression, and computational biology, etc.

 In today’s talk, we will be focusing on the algorithm that
computes all the repetitions in a string.

3/05/2009 3

Definition - Repeat/Repetition
 Repeat: a collection of identical repeating substrings.
 Repetition: adjacent repeats, no overlap, no spilt.
 Left Extendible (LE), Right Extendible (RE), Non Extendible (NE).

0 1 2 3 4 5 6 7 8
f = a a b a a b a b a

generator
(must be irreducible)

 Encoded as (s, l, p)
 s: starting position of the repetition
 l: length of the generator, period
 p: power of the repetition , exponent (p ≥ 2)

i.e. (0, 1, 2) (0, 3, 2) (1, 3, 2)

3/05/2009 4

Definition - Run
 Introduced by Main (1989), also called “Maximal Periodicity” [2].
 Represent repetitions, in a more compact way.
 Computing all the runs specifies all the repetitions in a string.

0 1 2 3 4 5 6 7 8 9
f = a a a b a a b a a a

Non LE generator tail Non RE
(proper prefix of generator)

 Encoded as (s, l, p, t)
 s: starting position of the repetition
 l: length of the generator, period
 p: power of the repetition, exponent (p ≥ 2)
 t: length of the tail
i.e. (1, 3, 2, 2) is equivalent to (1, 3, 2) (2, 3, 2) (3, 3, 2)

3/05/2009 5

Crochemore’s Repetitions Algorithm
 1981 Crochemore designed the first O(n log n)

algorithm to compute all the repetitions in a string [3].
 The main ideas of this approach is to successively

refine the indices of the string into equivalent classes.
 We define two indices at level l are equivalent if two

identical substring of length l start there.
 i.e. f = abcab {0, 3}ab at level 2

3/05/2009 6

Crochemore’s Repetitions
Algorithm - Example

3/05/2009 7

Revising Crochemore’s Algorithm to
Compute Runs
 The main approach is to combine the repetitions into runs.
 At each level of refinement, we build a binary search tree

base on the starting position of the repetitions to collect
the runs.

 Every repetition is rewritten in form of run and initialized
with tail size of zero.
 i.e. (0, 3, 2) is equivalent to (0, 3, 2, 0)

 At each level, when a new repetition is computed, we
traverse the tree to find a run to join:
 If find, join the run
 If not, insert it into the tree

3/05/2009 8

Revising Crochemore’s Algorithm to
Compute Runs - Example

0 1 2 3 4 5 6 7 8 9 10 11 12

f = c d c d c a b a b c d c d
Repetitions at level 2: (5, 2, 2) (9, 2, 2) (0, 2, 2) (1, 2, 2)

3/05/2009 9

(5, 2, 2, 0)

(0, 2, 2, 1) (9, 2, 2, 0)

(5, 2, 2, 0) (5, 2, 2, 0)

(9, 2, 2, 0)

(5, 2, 2, 0)

(0, 2, 2, 0) (9, 2, 2, 0)

Revising Crochemore’s Algorithm to
Compute Runs - Implementation

Run_Left

Run_Right

Run_s

Run_l

Run_p

Run_t

i.e. (7, 2, 2, 1) with left child (0, 2, 3, 0) and right child (15, 2, 4, 1)

3/05/2009 10

7 0 15

0 2 7

2 3 4

6

1 0 1

0 1 2 3 4 5 6 7 8 9 n-1

4

Work in Progress
 Implementation of revised algorithm is based on

Franek & Smyth & Xiao’s FSX10 (2003) approach of
Crochemore’s repetitions algorithm [4].

 In 2007 Chen & Puglisi & Smyth showed a collection of
fast and space efficient algorithms (CPS) to compute
runs [5].

 Testing above two algorithms on a set of various strings
to get an overview of their performance and possibly
memory usage comparison.
 Testing data includes the sample strings from:

 DNA, English, Fibonacci, periodic, protein, random

3/05/2009 11

References
1. Bill Smyth, Computing Patterns in Strings, Pearson

Addison-Wesley (2003), 423 pp.
2. Michael G. Main, Detecting leftmost maximal

periodicities, Discrete Applied Maths. 25 (1989) 145–153.
3. Maxime Crochemore, An optimal algorithm for computing

the repetitions in a word, Inform. Process. Lett. 12–5 (1981)
244–250.

4. Frantisek Franek& W. F. Smyth&Xiangdong Xiao, A note on
Crochemore's repetitions algorithm - a fast space-
efficient approach, Nordic Journal of Computing 10 (2003)
21–28.

5. Gang Chen& Simon J. Puglisi&W. F. Smyth, Fast and
Practical Algorithms for Computing All the Runs in a
String, Lecture Notes in Computer Science (2007) 307 - 315.

3/05/2009 12

Thank you!

3/05/2009 13

	Revising Crochemore's Repetitions Algorithm to Compute Runs in a String
	Outline
	Introduction
	Definition - Repeat/Repetition
	Definition - Run
	Crochemore’s Repetitions Algorithm
	Crochemore’s Repetitions Algorithm - Example
	Revising Crochemore’s Algorithm to Compute Runs
	Revising Crochemore’s Algorithm to Compute Runs - Example
	Revising Crochemore’s Algorithm to Compute Runs - Implementation
	Work in Progress
	References
	Thank you!

