Revising Crochemore's
Repetitions Algorithm to
Compute Runs in a String

Mei Jiang

Outline

Introduction
Some Basic Definitions
e repeat/repetition
° run
Crochemore’s Repetitions Algorithm
Revising Crochemore’s Algorithm to Compute Runs
Work in Progress

3/05/2009 Pl

//

Introduction

A string is a sequence of “letters” (symbols) drawn from
some (finite or infinite) “alphabet” (set) [1].
i.e. aword, a text file, a DNA sequence, etc.

The stringology is a science of algorithms on strings . There
are many areas that utilize the results of the stringology
such as information retrieval, DNA processing, etc.

Repetition problem has been significantly used in many
different fields, such as data mining, pattern-matching,
data compression, and computational biology, etc.

In today’s talk, we will be focusing on the algorithm that
computes all the repetitions in a string.

3/05/2009

Definition - Repeat/Repetition

Repeat: a collection of identical repeating substrings.
Repetition: adjacent repeats, no overlap, no spilt.
Left Extendible (LE), Right Extendible (RE), Non Extendible (NE).

S b e B e)
e b e s e s |
] J

\

Y Y
generator

(must be irreducible)

Encoded as (s, 1, p)
e s:starting position of the repetition
 |: length of the generator, period
e p:power of the repetition , exponent (p = 2)

Cesl0sE 200 o)

3/05/2009 4

Definition - Run

Introduced by Main (1989), also called “Maximal Periodicity” [2].
Represent repetitions, in a more compact way.
Computing all the runs specifies all the repetitions in a string.

—

Dy} b0
EE s e ST SESE
l'll\l

Non Lj generator tail Non RE

(proper prefix of generator)

N YD u»

Encoded as (s, |, p, t)
e s:starting position of the repetition
e |: length of the generator, period
e p:power of the repetition, exponent (p = 2)
* t:length of the tail
i.e. (1, 3, 2, 2) isequivalent to (1, 3, 2) (2, 3, 2) (3, 3, 2)

3/05/2009

//

Crochemore’s Repetitions Algorithm

1981 Crochemore designed the first O(n log n)
algorithm to compute all the repetitions in a string [3].

The main ideas of this approach is to successively
refine the indices of the string into equivalent classes.

We define two indices at level [are equivalent if two
identical substring of length [start there.

e i.e. f=abcab {o, 3},, at level 2

3/05/2009 6

__Crochemore’s Repeti

Algorithm - Example

s e) R G e S S)
f = a b a a a ab ab a
/ N
=1 i s 6) {1,4,7,9
= ==
=2 {0! 3, 6, 8}ab {2 5} aa {10}a$ {1’ 4,7, g}ba
| =
=3 {0, 3, 6= 8}aba {2= 5}aab {1, 4}baa {7}bab {g}ba$
= {
I=4 {0, 3}apaa {6}abab {8}aba$ {2, S}aaba {1, 4}oaan
v~ O\
=5 {0, 3}abaab {2}aabaa {5}aabab {1, 4}baaba
N
=6 {O, 3}abaaba {1}baabaa {4}baabab
et

I=7 {O} abaabaa {3} abaabab

3/05/2009 77

vising Crochemore’s
Compute Runs

The main approach is to combine the repetitions into runs.

At each level of refinement, we build a binary search tree
base on the starting position of the repetitions to collect
the runs.

Every repetition is rewritten in form of run and initialized
with tail size of zero.

e i.e. (o, 3, 2) is equivalent to (o, 3, 2, 0)
At each level, when a new repetition is computed, we
traverse the tree to find a run to join:

e If find, join the run

e If not, insert it into the tree

3/05/2009 8

e

vising Crochemore’s Algorithm to
Compute Runs - Example

S)
= e sd=c=aca=b=a b ¢ d c=d

Repetitions at level 2: (5, 2, 2) (9, 2, 2) (o0, 2, 2) (1, 2, 2)

(5,2, 2,0) (5,2, 2, 0)
= N =
(9,2, 2,0)

3/05/2009 9

—
ol

Vising Crochemore’s Algorithm to
Compute Runs - Implementation

P i Ry e o R B e n-1
Run_Left 4
Run_Right 6
Run_s q 7 |O 15 -
Run_1 0=
Run_p 2eaE 4
Run_t e 1

i.e. (7, 2, 2, 1) with left child (o, 2, 3, 0) and right child (15, 2, 4, 1)

3/05/2009

Work in Progress

Implementation of revised algorithm is based on
Franek & Smyth & Xiao’s FSX10 (2003) approach of
Crochemore’s repetitions algorithm [4].

In 2007 Chen & Puglisi & Smyth showed a collection of
fast and space efficient algorithms (CPS) to compute
runs [5].

Testing above two algorithms on a set of various strings

to get an overview of their performance and possibly
memory usage comparison.

e Testing data includes the sample strings from:
« DNA, English, Fibonacci, periodic, protein, random

3/05/2009

/

References

Bill Smyth, Computing Patterns in Strings, Pearson
Addison-Wesley &003), 423 Pp.

Michael G. Main, Detecting leftmost maximal
periodicities, Discrete Applied Maths. 25 (1989) 145-153.

Maxime Crochemore, An optimal algorithm for computing
the repetitions in a word, Inform. Process. Lett. 12-5 (1981)
244-250.

Frantisek Franek& W. F. Smyth&Xiangdong Xiao, A note on
Crochemore's repetitions algorithm - a fast space-
efficient approach, Nordic Journal of Computing 10 (2003)
21-28.

Gang Chen& Simon J. Puglisi&W. F. Smyth, Fast and
Practical Algorithms for Computing All the Runs in a
String, Lecture Notes in Computer Science (2007) 307 - 315.

3/05/2009 12

N

Thank youl!

3/05/2009 13

	Revising Crochemore's Repetitions Algorithm to Compute Runs in a String
	Outline
	Introduction
	Definition - Repeat/Repetition
	Definition - Run
	Crochemore’s Repetitions Algorithm
	Crochemore’s Repetitions Algorithm - Example
	Revising Crochemore’s Algorithm to Compute Runs
	Revising Crochemore’s Algorithm to Compute Runs - Example
	Revising Crochemore’s Algorithm to Compute Runs - Implementation
	Work in Progress
	References
	Thank you!

