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Introduction
 A string is a sequence of “letters” (symbols) drawn from 

some (finite or infinite) “alphabet” (set) [1].
i.e. a word, a text file, a DNA sequence, etc.

 The stringology is a science of algorithms on strings . There 
are many areas that utilize the results of the stringology
such as information retrieval, DNA processing, etc.

 Repetition  problem has been significantly used in many 
different fields, such as data mining, pattern-matching, 
data compression, and computational biology, etc.

 In today’s talk, we will be focusing on the algorithm that 
computes  all the repetitions in a string.
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Definition - Repeat/Repetition
 Repeat: a collection of identical repeating substrings.
 Repetition: adjacent repeats, no overlap, no spilt.
 Left Extendible (LE), Right Extendible (RE), Non Extendible (NE).

0     1     2     3     4     5     6     7     8
f  =   a  a  b  a  a  b  a  b  a

generator
(must be irreducible)

 Encoded as (s, l, p)
 s: starting position of the repetition 
 l: length of the generator, period
 p: power  of the repetition , exponent (p ≥ 2)

i.e. (0, 1, 2) (0, 3, 2) (1, 3, 2)
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Definition - Run
 Introduced by Main (1989), also called “Maximal Periodicity” [2].
 Represent repetitions, in a more compact way.
 Computing all the runs specifies all the repetitions in a string.

0      1     2     3     4     5     6     7    8      9
f =   a a  a  b  a  a  b  a  a  a

Non LE generator tail                       Non RE
(proper prefix of generator)

 Encoded as (s, l, p, t)
 s: starting position of the repetition 
 l: length of the generator, period
 p: power  of the repetition, exponent (p ≥ 2)
 t: length of the tail
i.e. (1, 3, 2, 2) is equivalent to (1, 3, 2) (2, 3, 2) (3, 3, 2)
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Crochemore’s Repetitions Algorithm
 1981 Crochemore designed the first O(n log n) 

algorithm to compute all the repetitions in a string [3].
 The main ideas of this approach is to successively 

refine the indices of the string into equivalent classes.
 We define two indices at level l are equivalent if two 

identical substring of length l start there.
 i.e. f = abcab {0, 3}ab at level 2
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Crochemore’s Repetitions 
Algorithm - Example
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Revising Crochemore’s Algorithm to 
Compute Runs
 The main approach is to combine the repetitions into runs.
 At each level of refinement, we build a binary search tree 

base on the starting position of the repetitions to collect 
the runs.

 Every repetition is rewritten in form of run and initialized 
with tail size of zero.
 i.e.  (0, 3, 2) is equivalent to (0, 3, 2, 0)

 At each level, when a new repetition is computed, we 
traverse the tree to find a run to join:
 If find, join the run
 If not, insert it into the tree
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Revising Crochemore’s Algorithm to 
Compute Runs - Example

0    1     2     3    4    5     6    7     8      9    10   11  12

f =  c  d  c  d  c  a  b  a  b  c  d  c  d
Repetitions at level 2: (5, 2, 2) (9, 2, 2) (0, 2, 2) (1, 2, 2)
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(5, 2, 2, 0)

(0, 2, 2, 1)           (9, 2, 2, 0)

(5, 2, 2, 0) (5, 2, 2, 0)

(9, 2, 2, 0)

(5, 2, 2, 0)

(0, 2, 2, 0)           (9, 2, 2, 0)



Revising Crochemore’s Algorithm to 
Compute Runs - Implementation

Run_Left

Run_Right

Run_s

Run_l

Run_p

Run_t

i.e. (7, 2, 2, 1) with left child (0, 2, 3, 0) and right child (15, 2, 4, 1)                                                 
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0 2 7

2 3 4
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Work in Progress
 Implementation of revised algorithm is based on 

Franek & Smyth & Xiao’s FSX10 (2003) approach of 
Crochemore’s repetitions algorithm [4].

 In 2007 Chen & Puglisi & Smyth showed a collection of 
fast and space efficient algorithms (CPS) to compute 
runs [5].

 Testing above two algorithms on a set of various strings 
to get an overview of their performance and possibly 
memory usage comparison.
 Testing data includes the sample strings from:

 DNA, English, Fibonacci, periodic, protein, random
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Thank you!
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