
Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

Parallelizing Crochemore’s Repetitions Algorithm
to Compute Runs in Strings

Mei Jiang

Advanced Optimization Laboratory
Department of Computing and Software

McMaster University

April 27, 2010

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

1 Outline

2 Introduction

3 Parallelization of FSX03

4 Parallelization of C2-K

5 Summary & Future Work

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

Background
Basic Notations
Crochemore’s Repetitions Algorithm
Parallelize FSX03 & C2-K

Background

A run, a maximal fractional repetition in a string was concep-
tually introduced by Main in 1989[4].

R. Kolpakov and G. Kucherov[5] showed how to compute all
the runs from leftmost runs in 2000.

A typical linear time algorithm for computing runs:
suffix array V L-Z factorization V leftmost runs V all runs

The linear-time algorithms for computing runs are not very con-
ducive to parallelization mainly because the suffix tree or suffix
array rely on recursion.

Though Crochemore’s repetitions algorithm has complexity of
O(n log n), its strategy of repeated refinements of classes of
equivalence, a process can be naturally parallelized.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

Background
Basic Notations
Crochemore’s Repetitions Algorithm
Parallelize FSX03 & C2-K

Repetition

Definition

(s,p,e) is a repetition in x iff
x[s+i] = x[s+p+i] = · · · = x[s+(e−1)p+i] for 0 ≤ i < p and
e ≥ 2. s is the starting position, p is the period, e is the exponent
(or power), and x[s..s + p - 1] the generator of the repetition.
The generator must be irreducible (not a repetition).

1 2 3 4 5 6 7 8 9 10
x = b a b a a b a a b b

The repetition can be encoded as (s, p, d), where d is the ending
position of the repetition, with d = s + ep − 1.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

Background
Basic Notations
Crochemore’s Repetitions Algorithm
Parallelize FSX03 & C2-K

Run

Definition

(s,p,e,t) is a run in x, if

1 for every 0 ≤ i ≤ t, (s + i , p, e) is a maximal repetition, and

2 either s = 0 or x[s − 1] 6= x[s + p − 1] (the run cannot be
extended to the left), and

3 either s + ep + t > n or x[s + (e − 1)p + t] 6= x[s + ep + t]
(the run cannot be extended to the right).

1 2 3 4 5 6 7 8 9 10
x = b a b a a b a a b b

A run (s, p, e, t) can be encoded as (s, p, d) where d is the end
position of the run, with e = (d − s + 1)/p and t = (d − s + 1)%p.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

Background
Basic Notations
Crochemore’s Repetitions Algorithm
Parallelize FSX03 & C2-K

Crochemore’s Repetitions Algorithm

1981 Crochemore designed the first O(n log n) algorithm to
compute all the repetitions in a string[3]. The main ideas of
his approach is to refine the indices of the string into several
equivalent classes at each level.

We say two indices at level l are equivalent if two identical
substring of length l start there. i.e. f = abcab {1, 4}ab at
level 2

After initial refinement, the original input string need not be ac-
cessed anymore, the rest refinements use other classes from pre-
vious level and only those so-called small classes, which brings
the worst-case complexity to O(n log n) .

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

Background
Basic Notations
Crochemore’s Repetitions Algorithm
Parallelize FSX03 & C2-K

Crochemore’s Repetitions
Algorithm - Example

1

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

Background
Basic Notations
Crochemore’s Repetitions Algorithm
Parallelize FSX03 & C2-K

FSX03 & C2-K

Franek et. al. gave a most memory efficient implementation of
Crochemore’s algorithm referred to as FSX03[2].

In [1], algorithm C was the best extension algorithm to compute
in terms of performance though it requires an extra O(n log n)
memory space. Its variant C2-K was introduced to reduce the
memory requirement.

Parallelize FSX03 & C2-K to compute runs within shared mem-
ory model.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

FSX03 Overview
Alternative 1
Alternative 2
Remark

FSX03 Overview

FSX03 implements the refinement step by traversing and pro-
cessing the all the elements in the small classes. For each
element e, e − 1 gets refined.

Refine current level of classes from previous level of classes.
However it’s too expensive to keep two levels, a notion of “snap-
shot” is used to keep the small classes from previous level.

When refine a class it involves moving the element from its
original class to a new class or leaving it in place. FSX03
uses Refine[] and RefStack[] to keep track of these classes.
They are cleared after processing each small class.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

FSX03 Overview
Alternative 1
Alternative 2
Remark

 “Snapshot” of small classes

 e11 e21

 e11 e12 … e21 …

 i j

 k1 k2

 i j

Small Classes: {e11, e12, …} {e21, e22, …} …

Classes: Ci = {e11 -1, …} Cj = {e12 -1, …} …

 Ck1 = {e11 -1} Ck2 = {e12 -1}

SCQueue[]

SElQueue[]

RefStack []

Refine[]

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

FSX03 Overview
Alternative 1
Alternative 2
Remark

Alternative 1

Assign each small class to a processor to process refinements simul-
taneously.

Extra memory for Refine[] and RefStack[] required for
each processor.

Less processors required.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

FSX03 Overview
Alternative 1
Alternative 2
Remark

…

Processor 1
S1 = {e11, e12, .., e1k}

Processor 2
S2 = {e21, e22, .., e2i} …

Processor t
St = {et1, et2, .., etj}

Master
Processor

Allocate memory for Refine[] and RefStack[]:

Static: size of n for both

Dynamic: size of the assigned small class to RefStack[] and
the largest class number to Refine[]

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

FSX03 Overview
Alternative 1
Alternative 2
Remark

Alternative 2

Each class is refined by all small classes, assign the refinement of
each class to a processor.

No extra memory required.

More processors required.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

FSX03 Overview
Alternative 1
Alternative 2
Remark

Refine every class by all the small class: S1, S2, ...

Processor 1
C1 × S1 …

Processor t
Ct × S1

Processor i’
Ct × S2

Processor j’
Ct × S3

 …

Processor j
C1 × S3

 …

Processor i
C1 × S2

Master
Processor

C1-s1

C1-s2

Ct-s1

Ct-s2

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

FSX03 Overview
Alternative 1
Alternative 2
Remark

Remark

Mutual exclusion locking for both read and write required for
critical routines i.e. AddToClass or RemoveFromClass.

Other steps in FSX03 could potentially be parallelized. i.e.
computation of the level 1 can be done by partitioning the
string and processed by multiple processors.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

C2-K Overview
Description
Data Structure
Remark

C Overview

C is a extension algorithm to compute runs:

1 Collect all the repetitions into an array of linked lists based on
their starting positions.

2 Traverse all the repetitions and consolidates the “nearby” rep-
etitions with the same period into runs.

p2 d2

p1 d1

 RunBucket

 s

LastRun_p (FNext)

LastRun_s (FStart) s

 p2

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

C2-K Overview
Description
Data Structure
Remark

C2-K Overview

C2-K is a variant of C, and it’s designed for bring down the
memory requirement of C.

1 Partially consolidates repetitions into runs when putting them
into the buckets. For a repetition with period p ≤ K and start
s, we check p buckets to the left and to the right of s; for
p > K , we check K buckets.

2 Traverses and consolidates the repetitions with periods p > K
as C2-K guarantees that all repetitions up to period K have
been consolidated into runs before the final sweep.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

C2-K Overview
Description
Data Structure
Remark

Description

Break down consolidation work in terms of periods and each
processor is assigned with a ranges of periods. Every processor
traverse the buckets and consolidate only the repetitions with
assigned periods.

The range of the periods of string for C2-K is (K + 1, bn/2c).

Equally distributes over P processors. d(n/2− (K + 1) + 1)/Pe
number of periods are assigned to each processor.
Or assign a fixed number periods t to each processors until all
the periods have been done.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

C2-K Overview
Description
Data Structure
Remark

Data Structure

There is NO extra data structure required for the parallelizing C2-K.

p2 d2

p1 d1

 RunBucket

 s

LastRun_p (FNext)

LastRun_s (FStart) s

 p2

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

C2-K Overview
Description
Data Structure
Remark

Remark

No additional space is required.

No extra actions such as locking are needed.

Might increase the overall complexity, however, overall execu-
tion time should not be affected.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

Summary & Future Work

We have investigated parallelization of Crochemore’s repeti-
tions algorithm to compute runs within shared memory model.

We are currently working on implementation for a multiple-
core machine platform and extensive testing against various
types of strings.

We intend to investigate all aspects of parallelization of the
extended Crochemore’s algorithm within distributed memory
model.

We plan on using SHARCNET as the hardware platform for
the implementation of the distributed memory parallel version
of the algorithm.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

References

F. Franek and M. Jiang, Crochemore’s repetitions algorithm
revisited - computing runs, Proceedings of Prague Stringology
Conference, (2009), pp. 123-128.

F. Franek, W. F. Smyth and X. Xiao, A note on
Crochemore’srepetitions algorithm a fast space-efficient approach,
Nordic Journal of Computing, 10(2003), pp. 21-28.

M. Crochemore, An optimal algorithm for computing the repetitions
in a word, Inform. Process. Lett., 125(1981), pp. 244-250.

M. G. Main, Detecting leftmost maximal periodicities, Discrete
Applied Maths., 25(1989), pp. 145-153.

R. Kolpakov and G. Kucherov, On maximal repetitions in words, J.
Discrete Algs., 1(2000), pp. 159-186.

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

Outline
Introduction

Parallelization of FSX03
Parallelization of C2-K

Summary & Future Work

T HANK YOU !

Mei Jiang Parallelizing Crochemore’s Alg. to Compute Runs in Strings

	Outline
	Introduction
	
	
	
	

	Parallelization of FSX03
	
	
	
	

	Parallelization of C2-K
	
	
	
	

	Summary & Future Work

