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Abstract

We present an approach to the problem of maximum number of distinct squares in
a string which underlines the importance of considering as key variables both the length
n and n − d where d is the size of the alphabet. We conjecture that a string of length
n and containing d distinct symbols has no more than n − d distinct squares, show the
critical role played by strings satisfying n = 2d, and present some properties satisfied by
strings of length bounded by a constant times the size of the alphabet.
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1 Introduction

The problem of the number of distinct squares when the types of the squares in a string
are counted rather than the occurrences, was first introduced by Fraenkel and Simpson [3]
showing that the number of distinct squares in a string of length n is bounded from above
by 2n and giving a lower bound of n − o(n) asymptomatically approaching n from below
for primitively rooted squares. Let us remark that a primitively rooted square is a square
whose generator is primitive, i.e. not a repetition. Later, Ilie [4] provided a simpler proof of
the main lemma of [3] and slightly improved the upper bound to 2n − Θ(log n) in [5]. It is
believed, that the number of distinct squares is bounded by the length of the string.

In this paper we investigate the problem of primitively rooted distinct squares in rela-
tionship to the alphabet of the string. Let us denote by σd(n) the maximum number of
primitively rooted distinct squares over all strings of length n containing exactly d distinct
symbols. We conjecture that σd(n) ≤ n− d, and point to possible avenues for investigating
the conjecture.

Similarly as in [2], which was dealing with the maximum number of runs in a string with
respect to the string’s alphabet, we present some elementary structures of the entries for
σd(n) presented in a so-called (d,n-d) table whose rows are indexed by d and columns are
indexed by n−d, and point to ways of applying reductions to the problem of distinct squares.
A fragment of the table for d ≤ 10 and n− d ≤ 10 is shown in Fig. 1.
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and Technology for the third author.
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n− d
1 2 3 4 5 6 7 8 9 10 11

d

1 1 1 1 1 1 1 1 1 1 1 ·
2 1 2 2 3 3 4 5 6 7 7 ·
3 1 2 3 3 4 4 5 6 7 8 ·
4 1 2 3 4 4 5 5 6 7 8 ·
5 1 2 3 4 5 5 6 6 7 8 ·
6 1 2 3 4 5 6 6 7 7 8 ·
7 1 2 3 4 5 6 7 7 8 8 ·
8 1 2 3 4 5 6 7 8 8 9 ·
9 1 2 3 4 5 6 7 8 9 9 ·
10 1 2 3 4 5 6 7 8 9 10 ·
11 · · · · · · · · · · ·

Figure 1: (d,n-d) table: entries computed for σd(n) with 1 ≤ d ≤ 10 and 1 ≤ n− d ≤ 10

Several regularities can be observed in the fragment of the (d,n-d) table: first observe
that σd(n) ≤ n − d is satisfied by all known entries. There are several other regularities
that can be observed in the table; some are proven analytically in section 2, some are shown
to be equivalent with the conjectured upper bound for σd(n), some are shown to lead to
a slightly stronger upper bound – see section 3. In section 4 we investigate the structure
of relatively short square-maximal strings on the main diagonal. In section 5, we discuss
possible ways to investigate the conjectured upper bound using the methods and insight
presented in section 4.

First we introduce the notation used in this paper. Sd(n) denotes the set of strings of
length n with exactly d distinct symbols; s(x) denotes the number of primitively rooted
distinct squares in a string x; σd(n) = max{ s(x) | x ∈ Sd(n) }. A(x) denotes the alphabet
set of a string x; a singleton of x refers to a symbol in a string x that occurs exactly once,
a pair refers to a symbol that occurs exactly twice, a triple refers to a symbol that occurs
exactly three times, and in general an k-tuple (k times).

2 Some basic properties of the (d,n-d) table

The following auxiliary lemma will be used later to investigate the structure of square-
maximal strings.

Lemma 1 Let x be a square-maximal string of length n with exactly d symbols, and let every
symbol of x occur at most 2 times. Then every pair in x must be adjacent.

Proof. Let x ∈ Sd(n) be square-maximal. Let us assume that x has a non-adjacent pair
of C’s. Case (i): if the pair does not occur in any square, then we can create a string y by
moving the C’s to the end. This will not destroy any square of x, but we gain a new square
CC, which contradicts the square-maximality of x. Case (ii): if the pair occurs in at least
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one square, let us move the two C’s to the end of the string. For every square uCvuCv of x
destroyed by the removal of the C’s, we gain a new square uvuv: if uvuv already existed in
some other part of x, every symbol of uv would have to occur in x at least 3 times, which
is not possible. Thus every destroyed square uCvuCv is replaced by a new square uvuv, in
addition we gain a new square CC. This contradicts the square-maximality of x. 2

The next proposition summarizes basic properties of the (d,n-d) table.

Proposition 1 For any 2 ≤ d ≤ n:

(a) σd(n) ≤ σd(n+ 1), i.e. the values are non-decreasing when moving left-to-right along
a row.

(b) σd(n) ≤ σd+1(n + 1), i.e. the values are non-decreasing when moving top-to-bottom
along a column.

(c) σd(n) < σd+1(n+ 2), i.e. the values are strictly increasing when moving left-to-right
and top-to-bottom along descending diagonals.

(d) σd(2d) = σd(n) = σd+1(n + 1) for n ≤ 2d, i.e. the values under and on the main
diagonal along a column are constant.

(e) σd(n) ≥ n−d for n ≤ 2d, i.e. the values under and on the main diagonal are at least
as big as conjectured; σd(2d+ 1) ≥ d and σd(2d+ 2) ≥ d+ 1.

(f) σd(2d)−σd−1(2d− 1) ≤ 1, i.e. the difference between the value on the main diagonal
and the value immediately above it is no more than 1.

Proof.

(a) Let x ∈ Sd(n) be square-maximal. Let y be x appended with a symbol a ∈ A(x).
Then y ∈ Sd(n+ 1), and σd(n+ 1) ≥ s(y) ≥ s(x) = σd(n).

(b) Let x ∈ Sd(n) be square-maximal. Let y be x appended with a symbol a /∈ A(x).
Then y ∈ Sd+1(n+ 1), and σd+1(n+ 1) ≥ s(y) = s(x) = σd(n).

(c) Let x ∈ Sd(n) be square-maximal, let a /∈ A(x). Define a new string y as x concate-
nated with aa. Then y ∈ Sd+1(n+ 2), and σd+1(n+ 2) ≥ s(y) = s(x) + 1 > s(x) =
σd(n).

(d) Let n ≤ 2d and let x ∈ Sd+1(n+1) be square-maximal. Since 2(d+1) ≥ n+2 > n+1,
x has a singleton. Let y be x with the singleton removed. Then y ∈ Sd(n) and
s(y) ≥ s(x) as no square can be destroyed while some squares can be created. Thus,
σd(n) ≥ s(y) ≥ s(x) = σd+1(n + 1). By (b), σd(n) ≤ σd+1(n + 1), so σd(n) =
σd+1(n+ 1) for n ≤ 2d.

(e) Let n ≤ 2d and consider the string x = aabbcc . . . consisting of n− d adjacent pairs.
Then x ∈ Sn−d(2n− 2d) and s(x) = n− d. By (d), σd(n) = σn−d(2n− 2d) ≥ s(x) =
n−d. Let consider the strings y = aaabbcc . . . consisting of d−1 adjacent pairs except
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for the first 3 entries being aaa, and z = aababaccdd . . . consisting of d− 2 adjacent
pairs except for the first 6 entries being aababa. We have σd(2d+ 1) ≥ s(y) = d and
σd(2d+ 2) ≥ s(z) = d+ 1.

(f) Let x ∈ Sd(2d) be square-maximal. Case (i): if x has a singleton, let y be x with the
singleton removed, then y ∈ Sd−1(2d− 1) and s(y) ≥ s(x). It follows that σd(2d) =
s(x) ≤ s(y) ≤ σd−1(2d − 1), and since σd(2d) ≥ σd−1(2d − 1) by (b), therefore we
get σd(2d) = σd−1(2d− 1). Case (ii): if x does not have a singleton, then x consists
of pairs, and by Lemma 1, x consists of adjacent pairs, and thus σd(2d) = s(x) = d.
Consider the string z = aaabbcc . . . consisting of d− 2 adjacent pairs except for the
first 3 entries being aaa. We have σd−1(2d − 1) ≥ s(z) = d − 1 = σd(2d) − 1, i.e.,
σd(2d)− σd−1(2d− 1) ≤ 1. 2

3 Main results

This sections contains several propositions that are equivalent with the conjectured upper
bound for σd(n). We also present conditions that lead to a slightly stronger upper bound
in Theorems 3 and 4. It can be observed in the (d,n-d) table, that the known values on
the main diagonal are identities, i.e. σd(2d) = d – which is equivalent to σd(2d) ≤ d by
Proposition 1(e). The next theorem shows that, indeed, this observation is equivalent with
the conjectured bound. In essence, the theorem shows that if the upper bound is violated,
then there must be a violation on the main diagonal.

Theorem 1 The conjectured upper bound σd(n) ≤ n − d holding true for all strings is
equivalent with the statement: σd(2d) ≤ d for every d ≥ 2.

Proof. Let n ≥ d ≥ 2, σd(n) ≤ n − d clearly implies that σd(2d) ≤ d; that is, by Propo-
sition 1(e), σd(2d) = d. To prove the other direction, we consider case (i) 2d > n: by
Proposition 1(d) we have σd(n) = σn−d(2n− 2d) ≤ n− d, and case (ii) n > 2d: by Proposi-
tion 1(b) we have σd(n) ≤ σn−d(2n− 2d) ≤ n− d. 2

Another observation of the (d,n-d) table given in Figure 1 is that the value on the main
diagonal and the value of its right neighbour are identical. Theorem 2 shows that the
inequality is equivalent with the conjectured upper bound, while the equality gives rise to a
slightly stronger upper bound given in Theorem 4.

Theorem 2 The conjectured upper bound σd(n) ≤ n − d holding true for all strings is
equivalent with the statement: σd(2d+ 1)− σd(2d) ≤ 1 for every d ≥ 2.

Proof. The statement follows from the conjectured upper bound is clear. Let us, thus prove
the opposite direction. We shall prove by contradiction that σd(2d) ≤ d for d ≥ 2. Let d ≥ 2
be the least such that σd(2d) > d. From the computed values of the (d, n−d) table it follows
that d > 10. Let x ∈ Sd(2d) be square-maximal. If x does not have a singleton, then n = 2d
and x consists of pairs, and thus by Lemma 1, x consists of adjacent pairs and σd(2d) = d, a
contradiction. Thus, x must have a singleton. Let y be x with the a singleton removed. Then
y ∈ Sd−1(2d − 1) and s(y) ≥ s(x). Thus, σd−1(2d − 1) ≥ s(y) ≥ s(x) = σd(2d). Moreover,
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σd−1(2d − 1) ≤ σd−1(2d − 2) + 1 ≤ d − 1 + 1 = d. Thus, d ≥ σd−1(2d − 1) = σd(2d) > d,
a contradiction. Therefore, σd(2d) ≤ d for every d ≥ 2 and the conjectured upper bound
follows by applying Theorem 1. 2

Another observation of the (d,n-d) table given in Figure 1 is that not only σd(2d) is bounded
by d, but also it is true for σd(2d+ 1). Theorem 3 shows that this property implies a slightly
stronger upper bound.

Theorem 3 If σd(2d+ 1) ≤ d for every d ≥ 2, then σd(n) ≤ n− d− 1 for n > 2d ≥ 4 and
σd(n) = n− d for n ≤ 2d.

Proof. We have d ≤ σd(2d) ≤ σd(2d + 1) ≤ d and so σd(2d) = σd(2d + 1) = d. It
implies that σd(n) = n − d for n ≤ 2d. For n > 2d we have, by Proposition 1(b), σd(n) ≤
σn−d−1(2n− 2d− 1) ≤ n− d− 1. 2

Theorem 4 If σd(2d) = σd(2d+ 1) for every d ≥ 2, then σd(n) ≤ n− d− 1 for n > 2d ≥ 4
and σd(n) = n− d for n ≤ 2d.

Proof. The results follow from Theorem 3 and the fact that σd(2d) = σd(2d+1) = d for every
d ≥ 2. To show that σd(2d) = σd(2d+ 1) = d for every d ≥ 2, let us argue by contradiction.
Let d be the smallest such that σd(2d) = σd(2d + 1) > d. From the values in the (d,n-d)
table calculated so far, we know that d > 10. Thus d − 1 = σd−1(2d − 2) = σd−1(2d − 1).
However, by Proposition 1(f), σd−1(2d− 1) + 1 ≥ σd(2d). It follows that d− 1 ≥ σd(2d)− 1.
i.e. d ≥ σd(2d), a contradiction. 2

4 Structure of relatively short square-maximal strings

In this section we investigate square-maximal strings that are short relative to the size of
their alphabets. The main goal of this investigation is to either find a counterexample on
the main diagonal if there is one, or to show that there are no counterexamples on the main
diagonal, as this would prove the conjectured upper bound for all strings. We show that a
square-maximal string from the main diagonal either complies with the conjectured upper
bound or has to have many singletons based on the facts that such string (a) cannot contain
pairs, see Lemma 4, and (b) if it contains a triple, it is must be a very special triple, implying
the existence of a symbol occurring at least 6 times, see Lemma 8. We hope that it might be
possible to show that counterexamples on the main diagonal do not exist by showing that
their structure would be impossible. We discuss this in Conclusion.

Lemma 2 shows the structure of the square-maximal strings on the main diagonal if they are
in compliance with the conjectured upper bond and they are identical with the value of its
right neighbour.

Lemma 2 If σd(2d) = σd(2d + 1) for every d ≥ 2, then for any d ≥ 2, x ∈ Sd(2d) square-
maximal, x is up to relabeling of the alphabet, unique and equal to x = (aabbcc . . . ).
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Proof. If x contains only pairs, by Lemma 1 all these pairs have to be adjacent. If x did not
consist only of pairs, then it would have to have a singleton. Let y be a string obtained from
x by removing a singleton. y ∈ Sd−1(2d− 1) and s(y) ≥ s(x). Thus d− 1 = σd−1(2d− 2) =
σd−1(2d − 1) ≥ s(y) ≥ s(x) = σd(2d) = d which is contradiction. Therefore x contains only
pairs and is up to relabeling, unique and equal to x = (aabbcc . . . ). 2

Auxiliary Lemma 3 will be used to estimate the number of squares that span from one part
of a string to the other part and relies on the result of Fraenkel and Simpson [3].

Lemma 3 Consider non-empty strings w, u, and v. The number of distinct squares of the
string wuv that start in w and end in v is at most |w|+ |v| where |w|, respectively |v|, denotes
the length of w, respectively v.

Proof. We discuss two cases: Case (i) |w| ≤ |v|: we count the rightmost occurrences of
squares. By Fraenkel-Simpson [3], there are at most two such squares starting at the same
position. Thus, there are at most 2|w| squares that start in w, and 2|w| ≤ |w| + |v|. Case
(ii) |w| > |v|: let x denote the reversal of the string x. By the previous argument, there are
at most 2|v| squares of the string wuv = v u w starting in v. It follows that there are at
most 2|v| squares of wuv that end in v and 2|v| < |w|+ |v|. 2

Lemma 4 shows that the square-maximal strings in first unknown position on the main
diagonal either comply with the conjectured upper bound or cannot contain a pair.

Lemma 4 Let σd′(2d
′) ≤ d′ where d′ < d. Let x ∈ Sd(2d) be square-maximal. Then either

s(x) = σd(2d) = d or x does not contain a pair.

Proof. Let assume that s(x) = σd(2d) > d and x contains a pair of C’s at positions i0
and i1, so x[i0] = x[i1] = C. If the pair occurs in at most 1 square, then we can replace
the first C with a new symbol Ĉ /∈ A(x). Let y be x with x[i0] replaced by Ĉ. Then
y ∈ Sd+1(2d) and σd+1(2d) ≥ s(y) = s(x) − 1 = σd(2d) − 1. Since 2d − (d + 1) < d,
we get 2d − (d + 1) ≥ σd+1(2d) ≥ σd(2d) − 1, i.e. d − 1 ≥ s(x) − 1, and so d ≥ s(x), a
contradiction. Therefore, the pair must occur in at least two squares, in fact in a non-trivial
run x = · · ·uvCwuvCwu · · · , where |u| ≥ 1. Let us form a new string y by removing all the
symbols between the C’s: y = · · ·uvCCwu · · · . By doing this, we may have destroyed |u|+1
squares – uvCwuvCw and its |u| rotations. The type of any square of u is preserved, as y
has u as a substring. The same is true for w, v, wu, and uv. Thus, we may have destroyed
the squares of wuv that start in w and end in v. By Lemma 3, we may have destroyed at
most |w| + |v| squares. So, altogether, we may have destroyed at most |w| + |u| + |v| + 1
squares, but we created a new one: CC. Thus s(y) ≥ s(x) − (|w| + |u| + |v|). Clearly,
A(y) = A(x), and so y ∈ Sd(2d − k) where k = |w| + |u| + |v|. By the assumption of this
lemma as 2d − k − d = d − k < d, we have d − k ≥ σd(2d − k) ≥ s(y) ≥ s(x) − k, and thus
d ≥ s(x), a contradiction. 2

Lemmas 5 and 6 use the same scenario investigating the square-maximal strings in the
first unknown position on the main diagonal and showing that they either comply with the
conjectured upper bound or may contain only very specific triples.

Lemma 5 Let σd′(2d
′) ≤ d′ where d′ < d. Let x ∈ Sd(2d) be square-maximal. Then either

s(x) = σd(2d) = d or if x contains a triple, then the triple has to occur in two distinct runs.
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Proof. Let assume that s(x) = σd(2d) > d. Let x[i0] = x[i1] = x[i2] = C be a triple
in x. We first show all three symbols occur in some runs. Assume that x[i0] does not
occur in any run. Let Ĉ be a symbol /∈ A(x). Let y be x with x[i0] replaced by Ĉ. Then
y ∈ Sd+1(2d) and σd+1(2d) ≥ s(y) = s(x) = σd(2d). Since 2d − (d + 1) < d, we get
2d−(d+1) ≥ σd+1(2d) ≥ σd(2d), i.e. d−1 ≥ σd(2d), a contradiction. For x[i2] not occurring
in any run, the proof is the same. If x[i1] does not occur in any run, then none of the elements
of the triple occur in any run. Then we can remove x[i1] forming a string y ∈ Sd(2d−1) such
that d − 1 ≥ σd(2d − 1) ≥ s(y) ≥ s(x) = σd(2d), a contradiction. We then show the three
symbols cannot occur in the same run. Assume they do occur in the run uvCwuvCwuvCwu.
We can proceed as in the proof of Lemma 4 and remove wuv between the first and second
C. 2

Lemma 6 Let σd′(2d
′) ≤ d′ where d′ < d. Let x ∈ Sd(2d) be square-maximal. Then either

s(x) = σd(2d) = d, or if x has a triple x[i0] = x[i1] = x[i2] = C occurring in two dis-
tinct runs u1v1x[i0]w1u1v1x[i1]w1u1 = u1v1Cw1u1v1Cw1u1 and u2v2x[i1]w2u2v2x[i2]w2u2 =
u2v2Cw2u2v2Cw2u2, then |u1| ≥ 1 and |u2| ≥ 1 and either u2v2 is not a suffix of u1v1 or
w1u1 is not a prefix of w2u2.

Proof. Let us assume that s(x) = σd(2d) > d. If |u1| = 0, then x[i0] occurs in a single square
v1Cw1v1Cw1. Let Ĉ be a symbol /∈ A(x) and let y be x with x[i0] replaced by Ĉ. Then
y ∈ Sd+1(2d) and σd+1(2d) ≥ s(y) = s(x) − 1 = σd(2d) − 1. Since 2d − (d + 1) < d, we get
2d−(d+1) ≥ σd+1(2d) ≥ σd(2d)−1, i.e. d−1 ≥ σd(2d)−1, and so d ≥ σd(2d), a contradiction.
It follows that |u1| ≥ 1. For |u2| = 0, the proof is the same. Thus, |u1| ≥ 1 and |u2| ≥ 1. Let
us assume that both u2v2 is a suffix of u1v1 and w1u1 a prefix of w2u2. Let us form a new
string y from x by removing w1u1v1 between x[i0] and x[i1] and removing w2u2v2 between
x[i1] and x[i2], that is y = x[1..i0]x[i1]x[i2..2d] = x[1..i0− 1]CCCx[i2 + 1..2d]. It follows that
y ∈ Sd(2d− k) where k = |w1|+ |u1|+ |v1|+ |w2|+ |u2|+ |v2|. How many squares we might
have destroyed? We might have destroyed |u1|+1 squares of u1v1Cw1u1v1Cw1u1 and |u2|+1
squares of u2v2Cw2u2v2Cw2u2. From w1u1v1, u1v1 has been preserved, w1u1 is a prefix of
w2u2 that was preserved, so the only squares we might have destroyed are the ones starting
in w1 and ending in v1, and by Lemma 3 there are at most |w1|+ |v1| of them. Similarly for
w2u2v2. Thus we might have destroyed at most |w1| + |u1| + |v1| + |w2| + |u2| + |v2| + 2 =
k + 2 squares, and we gained one (CCC). It follows that s(y) ≥ s(x) − k − 1. Replace
the first C in y by a new symbol Ĉ /∈ A(x) to form a string z. Then z ∈ Sd+1(2d − k)
and s(z) = s(y). Thus σd+1(2d − k) ≥ s(z) = s(y) ≥ s(x) − k − 1 = σd(2d) − k − 1.
Since 2d − k − d − 1 = 2d − |w1| − |u1| − |v1| − |w2| − |u2| − |v2| − d − 1 < d, we have
2d−k−d−1 ≥ σd+1(2d−k) ≥ s(x)−k−1, so 2d−k−d−1 ≥ s(x)−k−1 and so d ≥ s(x),
a contradiction. It follows that either u2v2 is not a suffix of u1v1, in which case u1v1 is a
suffix of u2v2, or w1u1 is not a prefix of w2u2, in which case w2u2 is a prefix of w1u1. 2

Lemma 7 shows that the square-maximal strings cannot contain parallel k-tuples. A k-tuple
of C’s occurring at positions {i1, · · · ik} and a k-tuple of D’s occurring at positions {j1, · · · jk}
are parallel if i1 < j1 < i2 < j2 < · · · < ik < jk.

Lemma 7 Let x ∈ Sd(2d) be square-maximal. Then x cannot contain two parallel k-tuples
for any k ≥ 2.
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Proof. Let us assume that x contains two parallel k-tuples of C’s and D’s. Let us move all
D’s to the end of the string x, forming a new string y ∈ Sd(2d). Any primitively rooted square
that contains m of the D’s must also contain at least m of the C’s. If we remove the D’s from
the square, we create a new square. Since it contains the C’s and since the original square
was primitively rooted, the new square also must be primitively rooted. For illustration:
[uCvDw][uCvDw] will become [uCvw][uCvw]. Moving the D’s to the end creates a new
square DD and so s(y) > s(x), a contradiction with the square-maximality of x. 2

Lemma 8 utilizes the previous lemmas and shows that any square-maximal string in the first
unknown position on the main diagonal either complies with the conjectured upper bound,
or if if it contains a triple, it must be a very specific one giving rise to a symbol that must
occur at least 6 times. Thus, each triple occurring must be balanced by an existence of a
unique set of 5 occurrences of a certain symbol. Though the symbol may not be unique to
a particular triple, the set of occurrences are mutually disjoint. Thus, every triple with its
assigned set of 5 occurrences is balanced by an existence of at least 4 singletons unique to
the triple and its assigned set.

Lemma 8 Let σd′(2d
′) ≤ d′ where d′ < d. Let x ∈ Sd(2d) be square-maximal. Then either

s(x) = σd(2d) = d or x has at least d2d3 e singletons.

Proof. Let us assume that s(x) = σd(2d) > d. From Lemma 4 it follows, that x does not
have any pair. From Lemmas 5 and 6, any triple x[i0] = x[i1] = x[i2] = C of x must be
special, i.e. it must satisfy

1. x[i0] and x[i1] occur in a run r1 = u1v1Cw1u1v1Cw1u1, where |u1| ≥ 1,

2. x[i1] and x[i2] occur in a run r2 = u2v2Cw2u2v2Cw2u2, where |u2| ≥ 1, and where
i1 − i0 6= i2 − i1 as otherwise the two runs would merge into a single one,

3. either u1v1 is a proper suffix of u2v2, or w2u2 is a proper prefix of w1u1.

Let us discuss the case when u1v1 is a proper suffix of u2v2; the case of w2u2 being a
proper prefix of w1u1 is the same just argued from the opposite direction. Let the run
r1 = u1v1Cw1u1v1Cw1u1 start at position t of x. Consider a = x[t]. If there is no oc-
currence of a in x[t + 1..i0 − 1], then we can replace all occurrences of a in x[1..i0 − 1]
with a new symbol, forming a string y, while destroying a single square u1v1Cw1u1v1Cw1

of x. Thus y ∈ Sd+1(2d), 2d − d − 1 ≥ σd+1(2d) ≥ s(y) = s(x) − 1 = σd(2d) − 1, so
d ≥ σd(2d), a contradiction. Thus a occurs at least twice in x[t..i0 − 1] = u1v1. Since
u1v1 is a suffix of u2v2, a occurs at least 4 more times – twice in each occurrence of u2v2.
Thus, x[t] occurs in x at least six times, the last occurrence before the last C. We assign
to the triple the sequence of positions of the 5 first occurrences of a after the position t
and denote it by As(C) = 〈j0, j1, j2, j3, j4〉, where t < j0 < j1 < j2 < j3 < j4 < i2 and
j0 < i0 and t is the start of the run r1 and x[t] = x[j0] = x[j1] = x[j2] = x[j3] = x[j4].
Of course, if the short appendix used was w2u2, then As(C) = 〈j0, j1, j2, j3, j4〉, where
i0 < j4 < j3 < j2 < j1 < j0 < t and i2 < j0 and t is the end of the run r2 and
x[t] = x[j0] = x[j1] = x[j2] = x[j3] = x[j4]. Below, we will show that such assignments
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are mutually disjoint, i.e. if C’s and D’s are different triples, then As(C) ∩As(D) = ∅.

Now we can estimate the number of singletons in x. Let m0 be the number of triples in x.
Let m1 be the number of multiply occurring symbols that are not assigned to triples – since
there are no pairs, it follows that such symbols occur at least 4 times. Finally, let m2 be the
number of singletons in x. The following 2 inequalities must hold: 2d ≥ 8m0 + 4m1 + m2

and d ≤ 2m0 +m1 +m2 which clearly yields 3m2 ≥ 2d and so m2 ≥ d2d3 e.

A proof of the claim that the assignments are mutually disjoint: Let As(C) = 〈j0, j1, j2, j3, j4〉
and let As(D) = 〈k0, k1, k2, k3, k4〉. If x[j0] 6= x[k0], then As(C) ∩ As(D) = ∅. Bellow, we
discuss the case when x[j0] = x[k0] = a.

In Lemma 6 it is shown that a triple of C’s can exist in x only if it occurs in two distinct
non-trivial runs u1v1Cw1u1v1Cw1u1 and u2v2Cw2u2v2Cw2u2. We refer to u1v1 and w2u2
as the appendices, and we say that u1v1 is a short appendix if u1v1 is a proper suffix of
u2v2, similarly we say that w2u2 is a short appendix if it is a proper prefix of w1u1. Thus,
Lemma 6 also stipulates that at least one of the appendices must be short.

Let us consider two different triples, one of C’s and one of D’s and let us assume that the first
C precedes the first D. We must discuss all the possible configurations of the two triples.
For better readability, we will denote by C1 the first occurrence of C, by C2 the second
occurrence of C etc. Similarly for D’s.

The C’s occur in two non-trivial runs r1 = u1v1C1w1u1v1C2w1u1 and
r2 = u2v2C2w2u2v2C3w2u2, while the D’s occur in two non-trivial runs
r3 = u3v3D1w3u3v3D2w3u3 and r4 = u4v4D2w4u4v4D3w4u4.

1. C3 occurs beforeD1, i.e. the triples do not interleave (schematically C1 C2 C3 D1 D2 D3).

(a) First we consider the case when the appendix determining As(C) and the appendix
determining As(D) are on the opposite sides.
Thus, the short appendix determining As(C) is on the left and the short appendix
determining As(D) is on the right. Then we are guarantied the following pattern
of occurrences of a in x (for the C’s, the a’s are shown in bold, for the D’s, the a’s
are shown underscored): x = · · ·a a C1 a a C2 a a C3 D1 a a D2 a a D3 a a · · · ,
so x[j4] occurs before C3, while the x[k4] occurs after D1. Therefore j4 < k4 and
so As(C) ∩As(D) = ∅.

(b) Next we consider the case when the appendix determining As(C) and the appendix
determining As(D) are facing each other.
Thus, for the C’s we are using the right appendix, for the D’s the left appendix.
Then we are guarantied the following pattern of occurrences of a in x (for the C’s,
the a’s are shown in bold, for the D’s, the a’s are shown underscored):
x = · · ·C1 a a C2 a a C3 a a D1 a a D2 a a D3 · · · , and thus x[j0] occurs
at or to the left of a (shown in bold), while x[k0] occurs at or to the right of
a (shown underscored). It is possible that two a’s between C3 and D1 are the
same. However, since we do not take the first occurrence of a for the assignments,
As(C) ∩As(D) = ∅.
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(c) Here we consider the case when the appendix determining As(C) and the appendix
determining As(D) are on the same side.
Without loss of generality, we can assume that both appendices used are on the
left. Then we are guarantied the following pattern of occurrences of a in x (for
the C’s, the a’s are shown in bold, for the D’s, the a’s are shown underscored):
x = · · ·a a C1 a a C2 a a C3 a a D1 a a D2 a a D3 · · · .Why cannot the first two
a’s be the same as the last two a’s? If it were the case, then C would be in the
appendix for the D’s, i.e. a part of the run r3 and hence repeat later. So, again
As(C) ∩As(D) = ∅.

2. Case x = · · ·C1 D1 D2 C2 · · · is not possible.
If either D1 or D2 occurred in u1v1, then there would be a D preceding C1. Thus both
D1 and D2 occur in w1, but then D occurs at least 4 times, a contradiction.

3. Case x = · · ·C1 D1 C2 D2 D3 C3 · · · is not possible.
As in the previous case, D1 must occur in w1 and D2 together with D3 must occur in
v2, hence D must occur at least 4 times, a contradiction.

4. Case x = · · ·C1 D1 C2 D2 C3 D3 · · · .
This case is not possible by Lemma 7 as the triples of C’s and D’s are parallel.

5. Case x = · · ·C1 C2 D1 C3 D2 D3 · · · .
We denote by w

(1)
2 the first occurrence of w2 in x, by w

(2)
2 the second occurrence of w2

in x, etc.
If D1 occurred in (u2v2)

(2), there would be a D preceding C2. Hence D1 must occur in

w
(1)
2 and hence D2 occurs in w

(2)
2 . Since the distance between C2 and C3 is the period

of r2, and the distance between D1 and D2 is the period of r3, and the distances are
equal, it follows that r2 = r3 = u2v2C2w

′
2D1w

′′
2u2v2C3w

′
2D2w

′′
2u2 (note that u3 = u2

and v3 = v2Cw
′
2 and w3 = w′′2.)

Schematically:
r1 : u1v1C1w1u1v1C2w1u1
r2 = r3 : u2v2C2w

′
2D1w

′′
2u2v2C3w

′
2D2w

′′
2u2

r4 : u4v4D2w4u4v4D3w4u4
Now consider the two runs r1 and r2. Since D1 cannot occur in (w1u1)

(2), it follows that
the w1u1 is a prefix of w′2 and hence of w′2D1w

′′
2u2, and so the appendix w′2D2w

′′
2u2

is long and by Lemma 6, u1v1 must be a short appendix and is used to determine
As(C).
Now consider the two runs r3 and r4. Since C3 cannot occur in (u4v4)

(1), u4v4 is a suffix
of w′2 and hence of u2v2C3w

′
2, and so the appendix u2v2C2w

′
2 is long. By Lemma 6,

w4u4 must be a short appendix and is used to determine As(D).

(a) Let a occur twice in u1 and in twice in u4 (the dots indicate the occurrences).
·· ·· ··

r1 : u1v1C1w1u1v1C2w1u1
r2 = r3 : u2v2C2w

′
2D1w

′′
2u2v2C3w

′
2D2w

′′
2u2

r4 : u4v4D2w4u4v4D3w4u4
·· ·· ··

Then a occurs twice in each occurrence of u1 and hence x[j4] occurs in or before

u
(3)
1 . Similarly, a occurs twice in each occurrence of u4 and hence x[k4] occurs in
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or after u
(1)
4 . Thus As(C) ∩As(D) = ∅.

(b) Let a occur only once in u1 and twice in u4.
· · · · ·

r1 : u1v1C1w1u1v1C2w1u1
· ·

r2 = r3 : u2v2C2w
′
2D1w

′′
2u2v2C3w

′
2D2w

′′
2u2

r4 : u4v4D2w4u4v4D3w4u4
·· ·· ··

Then a must occur in v1. Since u1v1 is a suffix of u2v2 and since w1u1 is a prefix
of w′2, we have 7 occurrences of a from the left and 6 occurrences of a from the
right, so again As(C) ∩As(D) = ∅.

(c) Let a occur twice in u1 and only once in u4.
This is symmetric to the previous case, we will have 6 occurrences of a from the
left, and 7 occurrences of a from the right.

(d) Let a occur in u1 only once and in u4 also only once.
· · · · ·

r1 : u1v1C1w1u1v1C2w1u1
· · ·

r2 = r3 : u2v2C2w
′
2D1w

′′
2u2v2C3w

′
2D2w

′′
2u2

· · ·
r4 : u4v4D2w4u4v4D3w4u4

· · · · ·
From the left there are 8 occurrences of a: a must occur in v1 and since u1v1 is a
suffix of u2v2, it must occur twice in (u2v2)

(2), and since u1 is a substring of w′2, a
must occur in all occurrences of w′2. Similarly, there are 8 occurrences of a from
the right. Even though it is possible the the last four occurrences from the left and
the last four occurrences from the right are the same, the first 6 occurrences from
the left and 6 occurrences from the right are disjoint, and so As(C)∩As(D) = ∅.

2

Theorem 5 stresses the fact that the first position on the main diagonal violating the con-
jectured upper bound implies an existence of a counterexample higher up. Similarly as
Theorems 1 and 2, this is yet another reformulation of the conjectured upper bound.

Theorem 5 The conjectured upper bound σd(n) ≤ n − d holding true for all strings is
equivalent with the statement: σd(4d) ≤ 3d for every d ≥ 2.

Proof. The statement clearly follows from the conjectured upper bound. We shall prove the
opposite direction by contradiction. Let us assume that the conjectured upper bound does
not hold. By Theorem 1, it follows that there is a counterexample x on the main diagonal,
i.e. a square-maximal x ∈ Sd(2d) with s(x) = σd(2d) > d. Let us consider the first column
d of the table in which the counterexample occurs, from the table as computed so far, we
know that d > 10. By Lemma 8, x has at least d2d3 e singletons. If we remove d2d3 e singletons

from x, we get a string y ∈ Sd′(n
′) such that s(y) ≥ s(x) > d where d′ = d − d2d3 e and

n′ = 2d−d2d3 e. Moreover, 4d′ = 4(d−d2d3 e) = 4d−4 · d2d3 e = 4d−2d−d2d3 e = 2d−d2d3 e = n′,
thus n′ = 4d′. So we have σd′(4d

′) ≥ s(y) ≥ s(x) = σd(2d) > d and since 3d′ = 4d′ − d′ =
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n′− d′ = (2d− d2d3 e)− (d− d2d3 e) = d, σd′(4d
′) > 3d′. Thus, we have a counterexample from

Sd′(4d
′). 2

5 Conclusions

The methods used in section 4 illustrate two possible approaches to investigate the conjec-
tured upper bound for all strings. One is to show that the first counterexample on the main
diagonal cannot have a pair, a triple, a quadruple, ... or an k-tuple, i.e. it cannot exist.
This approach is represented by Lemma 4. The other approach is to show that if the first
counterexample on the main diagonal contains a k-tuple, then it must contain a symbol with
a frequency > k. This also leads to the conclusion that a counterexample cannot exist. This
approach is represented by the proof of Lemma 8. Thus, Lemmas 4 and 8 illustrate the
usefulness of investigating the more orderly world of the strings on the main diagonal.

Let us just remark that our approach was inspired by a similar (d,n-d) table used for
investigating the Hirsch bound for the diameter of bounded polytopes. The associated Hirsch
(d,n-d) table exhibits similar regularities as the (d,n-d) table considered in this paper. The
Conjecture of Hirsch was recently disproved by Santos [7] by exhibiting a violation on the
main diagonal with d = 43 which was further improved to d = 20, see [6]. Similarly, we hope
that the structure of square-maximal strings is richer for n = 2d and therefore this could be
the focus of investigation for tackling the conjectured upper bound. For instance, while for
known values there is only essentially a single square-maximal string on the main diagonal
and it has a well-described structure, the further up from the diagonal, the more irregular
and unpredictable the set of square-maximal strings and their structures are.

An analogue of Theorem 5 for the maximal number of runs given in [1] shows that the
conjectured upper bound of n − d for the number of runs holding true for all strings is
equivalent with the upper bound of 8d for strings in Sd(9d) for every d ≥ 2.
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