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Abstract. The total number of runs in a string can be computed using
the Lempel-Ziv factorization obtained from the suffix tree or array of the
string. A number of linear-time algorithms have been developed based
on this strategy over the last few years. These algorithms are not very
conducive to parallelization, in particular the recursion-based linear-time
computation of the suffix tree or array. Recently, we introduced several
extensions of Crochemore’s repetitions algorithm for computing runs.
Among these various extensions, we identified the one with the best
performance and relatively good space efficiency. Though of complex-
ity O(nlogn), where n is the length of the input string, the nature of
Crochemore’s repetitions algorithm lends itself naturally to paralleliza-
tion. In this paper, we propose a parallel approach to computing runs
based on a parallelization of the extended Crochemore’s algorithm under
the shared memory model.

1 Introduction

The periodicity (repetitions of substrings) is the most studied and important
topic in combinatorics on words and algorithms on strings, going back to Thue
[11]. Tt has been applied in many different fields such as data mining, pattern-
matching, data compression, and computational biology.

In [3], Crochemore introduced the first O(nlogn) algorithm to compute all
the repetitions in a string. The notion of runs that captures maximal fractional
repetitions was introduced by Main in [10], where it was shown how to compute
all leftmost runs from Lempel-Ziv factorization of the input string. [9] introduced
an algorithm to compute all runs from the leftmost ones. Consequently, a number
of linear-time algorithms have been developed for computing runs; all these al-
gorithms are derived from Main’s original idea and they are rather involved and
complex. For their linearity, they rely on linear-time computation of the suffix
tree or array. In comparison, Crochemore’s algorithm is simpler and mathemat-
ically more elegant. The strategy of Crochemore’s algorithm relies on repeated
refinements of equivalence classes, a process that can be naturally parallelized,
as the refinement of each class is independent from other classes’ refinements and
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can be performed simultaneously by different processors in parallel. The linear-
time algorithms for computing runs on the other hand are not very conducive
to parallelization mainly because the linear-time computation of the suffix tree
or array relies on recursion. To date, there have not been many attempts to
parallelize computations of repetitions or runs, [1,2,4,7, 8].

In [5], we introduced a number of extensions of Crochemore’s repetitions
algorithm for computing runs. One of them, C2-K was identified as the best in
terms of performance and memory usage. C2-K was developed and tested based
on the most space-efficient implementation of Crochemore’s algorithm FSX03
[6]. In this paper, we discuss two approaches to parallelization of FSX03 and
C2-K in a shared memory multiprocessor model.

2 Basic Notation

A repetition (i.e. a tandem repeat) in a string x, denoted as a triple (s,p,e),
where s > 1 is the starting position, p > 1 the period, and e > 2 the exponent (or
power), describes the fact that xz[s+i] = x[s+p+i] = -+ = x[s+(e—1)p + 4] for
every 0 <4 < p. A maximal non-extendible repetition is such that the generator
x[s..s+p—1] itself is not a repetition, and the repetition cannot be extended to
the left or to the right. For instance, x = ababa has two maximal non-extendible
repetitions: (1,2,2) representing (ab)?, and (2,2,2) representing (ba)?.

The concept of a run was first introduced by Main in [10], where it was
called mazimal periodicity. The term maximal repetition is used in [9]. A
run is formed by a maximal non-extendible repetition followed by a proper prefix
(possibly empty) of the generator of the repetition, the so-called tail of the run.
For example, x = abaabaabaab = (aba)3ab (formed by repetition (aba)?® followed
by a prefix of the generator ab) is a run of period p = |aba| = 3. Moreover, it
is required that the run is maximal in that it is not extensible to the left or to
the right. Runs can be seen as compressed forms of repetitions. One run thus
encodes t+1 maximal non-extendible repetitions. Obviously, by listing all the
runs, we also list all the repetitions of the string (of course implicitly), but with
much less space.

A run can be encoded as (s,p,e,t); where s,p, e have the same meaning as
for repetitions, and 0 < t < p is the tail. Alternatively, to be more space efficient,
we could encode a run as a triple (s, p,d); where d = s+(p x e)+t—1 specifies
the ending position of the run, and the exponent and the tail size of the run
can be easily computed through equations e = (d—s+1)/p (integer division)
and t = (d—s+1)%p (modulus operation), respectively. Consider the following
example:

12345678910
r=babaabaabbd



Substring x[2..9] of x specifies a run (2,3,9), and it includes three repetitions
(aba)?, (baa)?, and (aab)?.

3 Crochemore’s Repetitions Algorithm

In 1981, Crochemore designed the first O(nlogn) algorithm to compute all max-
imal non-extendible repetitions in a string [3]. The main idea of this approach is
to successively group the indices of the string into equivalence classes and refine
them to smaller ones. Every equivalence class represents all repeats of a partic-
ular substring; in Figure 1, these substrings are indicated by the grey subscript
of each class.
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Fig. 1. Crochemore’s repetitions algorithm - refinements of equivalence classes

For an input string z[l..n], an equivalence =, on positions {1,2,...,n} is
defined by ¢ =, j if z[i..i+p—1] = z[j..j+p—1]. For technical reasons, a sentinel
symbol $ is used to denote the end of the input string; it is considered the
lexicographically smallest character. As shown in Figure 1, the indices of the
input string have been grouped into classes of ~,, p = 1..7. Each class that has
two or more elements represents a repeat of period p, where p equals the current
level of refinement .

Starting from level 1, Crochemore’s algorithm continuously refines the equiv-
alence classes until all classes have been reduced to a singleton (i.e. classes con-
taining only a single element). An important aspect of Crochemore’s algorithm



is the fact that the refinement of each equivalence class at each level is not car-
ried out by investigating the original input string, but rather, it is refined using
all the classes of the previous level. Note that the individual levels do not to
be saved, all we need is the previous level to compute the new one. Consider
a class C and a class D. In order to refine class C by D, for every ¢,j € C, if
i+1,j+1 € D, then i, j are placed into the same class, otherwise they must be
placed into different classes. To illustrate, let us refine a class C = {1, 3, 4, 6,
7,9 11} by a class D = {2, 5, 8, 10} on level 1 (see Figure 1). The positions 1
and 3 must be placed in different classes as 2 and 4 are not both in D, while 1
and 4 will be in the same class, since 2 and 5 are both in D. In fact, using all
classes for refinement, C will be refined into three classes, {1, 4, 7, 9}, {3, 6},and
{11}. When all classes are refined using all the classes from the previous level,
the current level is computed.

Note that this process of refinement if carried out as described above would
lead to an O(n?) algorithm. The most important aspect of Crochemore’s algo-
rithm is not to use all the classes for refinements, but only those so-called small
classes. We call the classes that result from the refinement of a class, a family.
For instance, in Figure 1, classes {1, 4, 7, 9}, {3, 6} and {11} on level 2 form
a family as they are the classes obtained by the refinement of class {1, 3, 4, 6,
7,9 11} on level 1. For each family, we identify the largest class and call all the
other classes in the family small. On level 1, all classes are designated as small.
By using only small classes for refinement, O(nlogn) complexity is achieved as
each element belongs to at most O(logn) small classes.

As mentioned previously, every equivalence class represents all repeats of a
particular substring. In order to report repetitions, each class needs to be exam-
ined for the “gaps” between the indices. If the gap is bigger than p, it indicates
that the repeats are not tandem; if the gap is smaller than p, it indicates that the
repeats are overlapped. Consider Figure 1, at level 3 in the class {1,4,7,9}upa
that represents all the repeats of aba, the gap between index 1 and 4 is 3 which
equals the period (level) 3, and the gap between 4 and 7 is also 3; but the gap
between 7 and 9 is 2 which is smaller than 3, indicating overlapping repeats.
Thus, when considering repetitions, we should consider indices 1, 4, and 7, but
not 9, which gives us the final output (1, 3, 3) representing the repetition (aba)?
in the string.

4 Parallelization in the Shared Memory Model

4.1 Overview

With the shared memory parallel programming model, large tasks are decom-
posed into smaller subtasks, and the subtasks are assigned to multiple proces-
sors to compute simultaneously, while these processors share the same primary
memory. Many contemporary machines with multi-core processors are the prime
examples of a hardware realization of this model.

When designing an algorithm under this model, extra care must be taken
to avoid corruption of the shared data and/or race conditions. In the following



sections, we discuss the ways to parallelize both, FSX03 [6] and its extension
C2-K [5].

4.2 Parallelization of FSX03

FSX03 Overview Any implementation of Crochemore’s repetitions algorithm
requires data structures to track classes, small classes, families, and gaps. Any
straightforward implementation of the refinement process (without tracking the
gaps) requires around 20n integers, where n is the length of the input string.
Using multiplexing (memory sharing) and some other tricks, FSX03 [6] managed
to implement it using only 10n integers. Care must be taken to avoid traversing
any of these structures in order to preserve the O(nlogn) complexity.

Description of the First Approach The most straightforward approach to
parallelizing FSX03 under the shared memory model, is to parallelize its core
step, that is, the refinement of each level. Due to the nature of Crochemore’s
algorithm, each class at level [ is refined by all small classes at the same level into
new classes of level [+1. FSX03 implements it by traversing all small classes and
using their elements for the refinements. Each of these refinements by a small
class can be carried out independently; intuitively, the refinement by each small
class can be assigned to a different processor (see Figure 2).

FSX03 does not keep the previous level while computing the current level, as
this would require too much memory (the classes are stored in multiple doubly-
linked lists). Instead a much less memory demanding “snapshot” of the previous
level is created; the previous level becomes the (yet unfinished) current level and
is modified through refinements until it becomes a finished current level.

At a level [, all the small classes are stored as a single “snapshot” in two
queues SE1Queue and SCQueue. The queue SE1Queue stores the elements of the
small classes in their natural order producing a list of all elements of all small
classes. SCQueue stores the first element of each class with the same order with
respect to SE1Queue, thus providing the means to determine the beginning and
end of each small class in SE1Queue.

In the shared memory model, the master processor assigns each small class
to a slave processor to process the elements in that class independently. This is
possible because of the following two observations:

1. The purpose of the “snapshot” queues is to preserve the elements of the small
classes from the previous level, so when a class ¢ changes (has an element
removed or added), this does not affect possible future refinements by c.
Thus, when multiple processors process the various small classes in parallel,
they will not interfere with each other.

2. When an element e from a small class is processed, it involves moving the
element e—1 from one class to another or leaving it in its original class.
When multiple processors process multiple elements at the same time, it is
not hard to observe that no two processors are trying to move the same
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element at the same time as the classes are always disjoint (each level is a
partitioning of all indices, level (41 is a refinement of level [). For this reason,
the equivalence classes at level | can be refined by multiple processors into
level [+1 in parallel without worrying about possible race conditions.

Data Structure As mentioned previously, when an element e from a small
class is processed, it involves moving the element e—1 from its original class
to a new class or leaving it in place. FSX03 uses an array Refine and a stack
RefStack to keep track of these assignments. After it has finished processing all
the elements in one small class, the contents of Refine and RefStack are purged
by setting everything to NULL (note that this cannot be done by traversing the
arrays as this would destroy the O(nlogn) complexity), so when the program
moves to the next small class, Refine and RefStack can be safely reused. This
reuse implementation works rather well for the serial program as every element
is processed sequentially and Refine and RefStack can be cleared out after each

Fig. 2. Parallelization, first approach

small class has been processed.




However, for this parallel implementation, every processor needs its own ver-
sion of Refine and RefStack to manage this process to avoid conflicts with the
other processors. To see this, let us discuss the situation when two processors
are trying to modify the same class: consider two small classes s; and s; that
are assigned and processed by two processors P; and P}, e; € s;, ¢; € s; and
e;—1,e;—1 € c. When P; processes the element e; and e;—1 is moved from the
class ci to a class ¢y, this fact is recorded as Refine[k] = h. When P; pro-
cesses the element e; in s; and e;—1 is moved from the class ¢ to a class ¢,
this requires Refine [k]= h’. If the two processors shared the same Refine and
RefStack, P; would end up getting the class ¢ as the recipient of e;—1 to (as
Refine[k]= h), which would be incorrect.

Master Processor

P1 P2 Py
refine all by refine all by refine all by
small class s; small class s, small class sy

Refine Refine Refine

RefStack RefStack RefStack
A A A
Y v Y

Shared Memory

Fig. 3. Modified first approach

Therefore, an independent set of Refine and RefStack arrays must be allo-
cated to each processor. This preserves the fast processing of FSX03, but requires
a significant increase of memory usage as there would have to be P distinct ver-
sions of Refine and RefStack, where P is the number of processors available.

Nevertheless, there is a significant speed-up in processing, as in the serial
version the program has to go through the whole “snapshot”, while in the parallel
version each processor just goes through the “snapshot” of a single small class.
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Fig. 4. SCQueue and SE1Queue for the parallel version of the program

SCQueue[] stores the index of the first element of each small class in the
parallel program (see Figure 4). It is easy for the master processor to identify
not only the starting position of each small class, but also its size (the difference
between the indices indicates the class size). In FSX03, the size of the small
class is not important as the elements are processed sequentially; however, in
the parallel implementation, the size of each small class determines the sizes
of RefStack because the number of refinements is no more than the number
of elements in the class. The size of Refine is the largest class index number
x+1 at the previous level to ensure that Refine can accommodate the possible
refinement from class ¢, (i.e. Refine has index x). Thus, a possible way to
decrease the amount of memory required is to allocate Refine and RefStack
dynamically, and only of the necessary size (see Figure 3). This could provide
a dramatic decrease on memory usage because the total memory required for
RefStack is significantly cut down to the size of all small classes (less than string
size n), and the total memory required for Refine is also reduced depending on
the largest class index number (up to n—1) of the previous level.

Remark As we discussed above, it is safe to process small classes by multi-
ple processors in parallel. However, there are several service routines used in
the refinement process such as AddToClass or RemoveFromClass, etc. Their use
requires mutual exclusion locking for both read and write in the parallel imple-
mentation. This is necessary because these procedures modify the shared data
structures such as the classes and families and they are implemented in multiple
doubly-linked lists. When these lists are accessed or modified by two processors
at the same time, this could otherwise lead to corruption of these structures.

Description of the Second Approach The first approach to parallelization of
FSXO03 leads both to a significant speed-up and a significant increase in memory
usage. In this section we describe an alternative approach to parallelizing FSX03.
In a typical algorithmic “trade-off”, this approach trades speed for a decrease in
memory usage (see Figure 5).
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Fig. 5. Parallelization, second approach

In this approach, the master processors assigns each slave processor a class
to be refined, using the “snapshot” of all small classes. The advantage of this
approach is the fact that Refine and RefStack are no longer needed at all as
each processor only refines one class and thus needs to “remember” only one
destination class for each refinement by a small class. The disadvantage is, of
course, that each of the slave processors may take almost as long as a single
processor in the serial implementation of FSX03, as it must traverse the whole
“snapshot”. There are some potential speed-ups based on the fact, that knowing
the smallest and the largest elements of the class to be refined limits the part of
each small class in the “snapshot” that has to be traversed. This effect increases
as the classes are getting progressively smaller.

Remark As in the first approach, the service routines used in the refinement
process require mutual exclusion locking for both read and write.

4.3 Parallelization of the Extension

Extended Algorithm C/C2-K Overview In [5], we discussed implementa-
tions of three different algorithms to extend Crochemore’s repetitions algorithm
to compute runs. Algorithm C was the best in terms of performance (i.e. preserv-
ing the original time complexity) though it requires an extra O(nlogn) space for



consolidating repetitions reported by the underlying FSX03 to runs. Its variant
C2-K was introduced in order to reduce the memory requirement of C, with
as little performance degradation as possible, while preserving the complexity
O(nlogn).

The main approach of C and C2-K is to collect all the repetitions into an
array of linked lists based on their starting positions. This array acts as a list
of buckets where each bucket contains a linked list of repetitions with the same
starting position. After all the repetitions are collected and placed in the buckets,
the algorithm traverses all the buckets and all the repetitions within each bucket
and consolidates the “nearby” repetitions with the same period into runs.

In contrast to C, C2-K partially consolidates repetitions into runs by joining
the repetitions from up to K buckets to the left and up to K buckets to the right
of the current position during the repetitions collection process. The rationale
behind this approach is lowering the memory requirements: there are fewer runs
than repetitions, so storing runs rather then repetitions saves memory. C2-K
guarantees that all repetitions up to period K have been fully consolidated
into runs before the final sweep, while repetitions of periods > K are partially
consolidated.

Description The main task of the extended algorithm is to consolidate the
repetitions that were previously collected in the buckets into runs. Instead of
one processor carrying out the consolidation for all periods of repetitions, in
the parallel version, each of the processors can be assigned to consolidate only
repetitions of a given range of periods (the range could consist of as little as
one period). Thus, the master processor splits up the consolidation work in
terms of ranges of periods and the slave processors traverse the buckets and only
consolidate the repetitions within its assigned range of periods.

Data Structure Recall (see [5]) that C2-K requires two arrays LastRun_p and
LastRun_s to store the pointer and starting position, respectively, of the last run
in the bucket array. For the parallelized version of C-2K, as different processors
are sweeping through the buckets to consolidate the repetitions of different peri-
ods in parallel, the repetitions of any given period p are processed by one single
processor. Therefore, memory locations LastRun_p [p] and LastRun_s [p] are ac-
cessed and modified by one processor at any given time. This simple observation
ensures that the multiple processors can make use of LastRun_p and LastRun_s
to consolidate runs in parallel without worrying about race conditions or data
corruption.

Another easy observation is that at any given time, no two processors modify
the same repetition in the buckets. Because every repetition has a specific period,
the consolidation of repetitions with a given period is designated to one processor
only. Hence, there is no extra data structure required for the parallelized imple-
mentation of C2-K. Moreover, there is no need for mutually exclusive locking of
the common structures.



5 Conclusion and Further Research

We have investigated parallelization of the extended Crochemore’s repetitions
algorithm to compute runs within the framework of the shared memory model.
The discussion has been carried out on a rather abstract level, dealing with the
issues of preserving the integrity of the shared data structures and avoiding the
race conditions.

Let us remark that the discussion of the parallelization of FSX03 focused
mainly on the parallelization of the refinement step. However, there are other
aspects that could potentially be parallelized. For example, for the computation
of level 1, the input string could be partitioned into several substrings, processed
by different processors in parallel and the results are pieced together by the
master processor.

We identified two basic approaches:

(1) The first approach that increases the memory usage by P X 2n integers,
where P is the number of available processors, but giving a large speed-up
in comparison to the serial version;

(a) and its modification that relies on dynamic memory allocation while
lowering the memory demand. Of course, dynamic allocation and deal-
location degrade the performance.

(2) The second approach that decreases the memory usage by 2n integers, but
giving a small speed-up in comparison to the serial version.

We are currently working on C/C++ implementations of all three variants
for a 16-core server. We will conduct experiments to compare these variants and
the serial program in order to determine

(1) whether the speed-up of the first approach warrants the increased memory
usage;

(2) whether the modification of the first approach using dynamic allocation
brings any significant decrease in memory usage;

(3) whether the memory usage decrease of the second approach warrants the
speed degradation.

In the near future, we intend to investigate all aspects of parallelization of
the extended Crochemore’s algorithm within the framework of the distributed
memory model. Since there will not be any data structures to share, the re-
sulting algorithm will be quite distinct in its implementation. We plan on using
SHARCNET, a super-computing network, as the hardware platform for the im-
plementation.
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