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Abstract

Crochemore repetition algorithm introduced in 1981 was the first O(n log n) algorithm for com-
puting repetitions. Since then, several linear-time worst-case algorithms for computing runs have
been introduced. They all follow a similar strategy – first compute the suffix tree or array, then
use the suffix tree or array to compute the Lempel-Ziv factorization, then using the Lempel-Ziv
factorization compute all the runs.

It is conceivable that in practice an extension of Crochemore repetition algorithm may out-
perform the linear-time algorithms, or at least for certain classes of strings. The nature of
Crochemore algorithm lends itself naturally to parallelization, while the linear-time algorithms
are not easily conducive to parallelization.

For all these reasons it is interesting to explore ways to extend the original Crochemore
repetition algorithm to compute runs. We present three variants of extending the repetition
algorithm to compute runs – two with a worsen complexity of O(n log2 n), and one with the same
complexity as the original algorithm. The three variants are tested for speed of performance and
their memory requirements are analyzed.
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1 Introduction

An important structural characteristic of a string over an alphabet is its periodicity. Repetitions
(tandem repeats) have always been in the focus of the research into periodicities. The notion of
runs that captures maximal repetitions which themselves are not repetitions was introduced by Main
([M89]) as a more succinct notion in comparison with repetitions. It was shown by Crochemore in
1981 that there could be O(n log n) repetitions in a string of length n and an O(n log n)-time worst-
case algorithm was presented ([C81]), while Kolpakov and Kucherov proved in 2000 that the number
of runs was O(n) ([KK00]).

Since then, several linear-time worst-case algorithm have been introduced, all based on linear
algorithm for computing suffix trees or suffix arrays. Main ([M89]) showed how to compute the
leftmost occurrences of runs from the Lempel-Ziv factorization in linear time, Weiner ([W73]) showed
how to compute Lempel-Ziv factorization from a suffix tree in linear time. Finally, in 1997 Farach
([F97]) demonstrated a linear construction of suffix tree. In 2000, Kolpakov and Kucherov ([KK00])
showed how to compute all the runs from the leftmost occurrences in linear time. Suffix trees are
complicated data structures and Farach construction was not practical to implement for sufficiently
large n, so such a linear algorithm for computing runs was more of a theoretical result than a practical
algorithm.

In 1993, Manber and Myers ([MM93]) introduced suffix arrays as a simpler data structure than
suffix trees, but with many similar capabilities. Since then, many researchers showed how to use
suffix arrays for most of the tasks suffix trees were used without worsening the time complexity. In

2



Frantisek Franek and Mei Jiang 3

2004, Abouelhoda et. al. showed how to compute in linear time the Lempel-Ziv factorization from
the extended suffix array. In 2003, several linear time algorithms for computing suffix arrays were
introduced (e.g. [KS03, KA03]). This paved the way for practical linear-time algorithms to compute
runs. Currently, there are several implementations (e.g. Johannes Fischer’s, UnivarsitätTübingen, or
Kucherov’s, CNRS Lille) and the latest, CPS, is described and analyzed in [CPS07].

Though suffix arrays are much simpler data structures than suffix trees, these linear time algo-
rithms for computing runs are rather involved and complex. In comparison, Crochemore algorithm
is simple and mathematically elegant. It is thus natural to compare their performances. The strat-
egy of Crochemore algorithm relies on repeated refinements of classes of equivalence, a process that
can be easily parallelized, as each refinement of a class is independent of the other classes and their
refinements, and so can be performed simultaneously by different processors. The linear algorithms
for computing runs are on the other hand not very conducive to parallelization (the major reason is
that all linear suffix array constructions rely on recursion). For these reasons we decided to extend
the original Crochemore algorithm based on the most memory efficient implementation by Franek et.
al. ([FSX03]).

In this report we discuss and analyze three possible extensions of FSX03 for computing runs and
their performance testing: two variants with time-complexity of O(n log2 n) and one variant with
time-complexity of O(n log n).

2 Basic notions

Repeat is a collection of repeating substrings of a given string. Repetition, or tandem repeat,
consists of two or more adjacent identical substrings. It is natural to code repetitions as a triple
(s, p, e), where s is the start or starting position of the repetition, p is its period , i.e. the length
of the repeating substring, and e is its exponent (or power ) indicating how many times the repeating
substring is repeated. The repeating substring is referred to as the generator of the repetition. More
precisely:

Definition 2.1. (s, p, e) is a repetition in a string x[0..n−1]
if x[s..(s+p−1)] = x[(s+p)..(s+2p−1)] = · · · = x[(s+(e−1)p)..(s+ep−1)].

A repetition (s, p, e) is maximal if it cannot be extended to the left nor to the right, i.e. (s, p, e) is a
repetition in x and x[(s−p+1)..(s−1)] �= x[s..(s+p−1)] and x[(s+(e−1)p)..(s+ep−1)] �=
x[(s+ep)..(s+(e+1)p−1)].
In order to make the coding of repetitions more space efficient, the repetitions with generators that
are themselves repetitions are not listed; for instance, aaaa should be reported as (0,1,4) just once,
there is no need to report (1,2,2) as it is subsumed in (0,1,4).
Thus we require that generator of a repetition to be irreducible, i.e. not a repetition.

Consider a string abababa, there are maximal repetitions (0,2,3) and (1,2,3). But in fact, it can
be viewed as a fractional repetition (0, 2, 3 + 1

2). This is an idea of a run coded into a quadruple
(s, p, e, t), where s, p, and e are the same as for repetitions, while t is the tail indicating the length
of the last incomplete repeat. For instance, for the above string we can only report one run (0,2,3,1)
and it characterizes all the repetitions implicitly. The notion of runs is thus more succinct and more
space efficient in comparison with the notion of repetitions. More precisely:

Definition 2.2. x[s..(s+ep+t)] is a run in a string x[0..n−1]
if x[s..(s+p−1)] = x[(s+p)..(s+2p−1)] = · · · = x[(s+(e−1)p)..(s+ep−1)] and
x[(s+(e−1)p)..(s+(e−1)p+t)] = x[(s+ep)..(s+ep+t)],
where 0 ≤ s < n is the start or the starting position of the run, 1 ≤ p < n is the period of the
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run, e ≥ 2 is the exponent (or power) of the run, and 0 ≤ t < p is the tail of the run. Moreover,
it is required that either s = 0 or that x[s−1] �= x[s+2p−1] (in simple terms it means that it is a
leftmost repetition) and that x[s+(ep)+t+1] �= x[s+(e+1)p+t+1] (in simple terms it means that the
tail cannot be extended to the right). It is also required, that the generator be irreducible.

3 A brief description of Crochemore algorithm

Let x[0..n−1] be a string. We define an equivalence ≈p on positions {0, · · · , n−1} by i ≈p j if
x[i..i+p−1] = x[j..j+p−1]. In Fig.1, the classes of ≈p, p = 1..8 are illustrated. For technical
reasons, a sentinel symbol $ is used to denote the end of the input string; it is consider to be the
lexicographically smallest character. If i, i+p are in the same class of ≈p (as illustrated by 5, 8 in
the class {0, 3, 5, 8, 11} on level 3, or 0,5 in class {0, 5, 8} on level 5, in Fig.1) then there is a tandem
repeat of period p (thus x[5..7] = x[8..10] =aba and x[0..4] = x[5..9] =abaab).

a b a a b a b a a b  a  a  b  a  b  $
0  1  2  3 4  5 6  7  8  9 10 11 12 13 14 15

{0,2,3,5,7,8,10,11,13} a {1,4,6,9,12,14} b

level

1

{2,7,10}aa {1,4,6,9,12} ba2 {0,3,5,8,11,13} ab {14}b$

{2,7,10}aab {1,6,9}baa3 {0,3,5,8,11} aba {4,12}bab{13}ab$

{2,7,10}aaba {1,6,9}baab4 {0,5,8}abaa {4}baba{3,11}abab {12}bab$

{7}aabaa {1,6,9}baaba5 {0,5,8}abaab{3}ababa{2,10}aabab {11}abab$

6 {0,5,8}abaaba{2}aababa {10}aabab$ {6}baabaa

7 {5,8}abaabaa {0}abaabab {1}baababa

{1,9}baabab

{9}baabab $

8 {5}abaabaab {8}abaabaa $

{15}$

Figure 1: Classes of equivalence and their refinements for a string abaababaabaabab

Thus the computation of the classes and identification of repeats of the same “gap” as the level
(period) being computed lei in the heart of Crochemore algorithm. A naive approach following the
scheme of Fig.1 would lead to an O(n2) algorithm, as there are potentially ≤ n classes on each level
and there can be potentially ≤ n

2 levels.

The first level is computed directly by a simple left-to-right scan of the input string - of course we
are assuming that the input alphabet is {0, · · · , n−1}, if it is not, in O(n log n) the alphabet of the
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input string can be transformed to it.

Each follow-up level is computed from the previous level by refinement of the classes of the previous
level (in Fig.1 indicated by arrows). Once a class decreases to a singleton (as {15} on level 1, or {14}
on level 2), it is not refined any further. After a level p is computed, the equivalent positions with
“gap” are identified, extended to maximum, and reported. Note that the levels do not to be saved,
all we need is a previous level to compute the new level (which will become the previous level in the
next round). When all classes reach its final singleton stage, the algorithm terminates.

How to compute next level from the previous level – refinement of a class by class. Consider a
refinement of a class C on level L by class D on level L: take i, j ∈ C, if i+1, j+1 ∈ D, then we leave
them together, otherwise we must separate them.
For instance, let us refine class C = {0, 2, 3, 5, 7, 8, 10, 11, 13} by class D = {1, 4, 6, 9, 12, 14} on level
1. 0 and 2 must be separated as 1,3 are not both in D, 0 and 3 will be in the same class, since 1,4
are both in D. In fact C will be refined into two classes, one consisting of D shifted one position
to the left ({0, 3, 5, 8, 11, 13}), and the ones that were separated ({2, 7, 10}). If we use all classes for
refinement, we end up with the next level.

A major trick is not to use all classes for refinement. For each “family” of classes (classes that
were formed as a refinement of a class on the previous level – for instance classes {2, 7, 10} and
{0, 3, 5, 8, 11, 13} on level 2 form a family as they are a refinement of the class {0, 2, 3, 5, 7, 8, 10, 11, 13}
on level 1). In each family we identify the largest class and call all the others small. By using only
small classes for refinement, O(n log n) complexity is achieved as each element belongs only to O(log n)
small classes.

Many linked lists are needed to be maintained to kept track of classes, families, the largest classes
in families, and gaps. Care must be taken to avoid traversing any of these structures not to destroy the
O(n log n) complexity. It was estimated that an implementation of Crochemore algorithm requires
about 20*n machine words. FSX03 ([FSX03]) managed to trim it down to 15*n using memory
multiplexing and virtualization without sacrificing either the complexity or the performance.

4 Extending Crochemore algorithm to compute runs

One of the features of Crochemore algorithm is that

(a) repetitions are reported level by level, i.e. all repetitions of the same period are reported
together, and

(b) there is no order of repetition reporting with respect to the starting positions of repetitions (this
is a product of the process of refinement).

and thus the repetitions must be “collected” and “joined” into runs. For instance, for a string
x=abaababaabaabab$, the order of repetitions as reported by the algorithm is shown in Fig.2; it
also shows some of the repetitions that have to be joined into runs.

The first aspect of Crochemore algorithm (see (a) above) is good for computing runs, for all
candidates of joining must be of the same period. The second aspect (see (b) above) is detrimental,
for it is needed to check for joining two repetitions with “neigbouring” starts.

4.1 Variant A

In this variant all repetitions for a level are collected, joined into runs, and reported.

The high level logic:
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a b a a b a b a a b  a  a  b  a  b  $
0  1  2  3 4  5 6  7  8  9 10 11 12 13 14 15

(10,1,2)
(7,1,2)
(2,1,2)
(11,2,2)
(3,2,2)
(4,2,2)
(6,3,2)
(5,3,3)
(0,3,2)
(7,3,2)
(0,5,2)
(1,5,2)

a b a a b a b a a b  a  a  b  a  b  $
a b a a b a b a a b  a  a  b  a  b  $
a b a a b a b a a b  a  a  b  a  b  $
a b a a b a b a a b  a  a  b  a  b   $
a b a a b a b a a b  a  a  b  a  b  $
a b a a b a b a a b  a  a  b  a  b  $
a b a a b a b a a b  a  a   b  a  b  $
a b a a b a b a a b  a   a  b  a  b  $
a b a a b a b a a b  a  a  b  a  b  $
a b a a b a b a a b  a  a  b   a  b  $
 a b a a b a b a a b   a  a  b  a  b  $
 a b a a b a b a a b  a   a  b  a  b  $

run

run

run

Figure 2: Reporting repetitions for string abaababaabaabab$

1. Collect the runs in a binary search tree based on the starting position. There is no need to
record the period, as all the repetitions and all the runs dealt with are of the same period.

2. When a new repetition is reported, find if it should be inserted in the tree as a new run, or if
it should be joined with an existing run.

3. When all repetitions of the period had been reported, traverse the tree and report all runs (if
depth first traversal is used, the runs will be reported in order of their starting positions).

The rules for joining:

1. Descend the tree as if searching for a place to insert the newly reported repetition.
2. For every run encountered, check if the repetition should be joined with it.

(a) If the repetition is a substring of the run, ignore the repetition and terminate the search.
(b) If the run is a substring of the repetition, replace the run with the repetition and terminate

the search.
(c) If the run’s starting position is to the left of the starting position of the repetition, if the

run and the repetition have an overlap of size ≥ p, the run’s tail must be updated to
accommodate the repetition (i.e. the run is extended to the right). On the other hand, if
the overlap is of size < p or empty, continue search.

(d) If the run’s starting position is to the right of the starting position of the repetition, if
the repetition and the run have an overlap of size ≥ p, the run’s starting position must
be updated to accommodate the repetition (i.e. the run is extended to the left). On the
other hand, if the overlap is of size < p or empty, continue search.

For technical reasons and to lower memory requirements, the runs are recorded in the search tree
as pairs (s, d) where s is the starting position of the run, while d is the end position of the run (let
us remark again that we do not need to store the period p). Note that we can easily compute the
exponent: e = (d-s+1) / p, and the tail t = (d-s+1) % p.

To avoid dynamic memory allocation and the corresponding deterioration of performance, the
search tree is emulated by 4 integer arrays of size n, named RunLeft[] (emulating pointers to the
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RunLeft [ ]   ( reuse FNext [ ] )

RunRight [ ]  ( reuse FPrev [ ] )

Run_s [ ]   ( reuse FMember [ ] )

Run_d [ ]  ]   ( reuse FStart [ ] )

Figure 3: Data structures for Variant A, in red are the arrays that can be reused.

left children), RunRight[] (emulating pointers to the right children), Run_s[] (emulating storing of
the starting position in the node), and Run_d[] (emulating storing of the end position in the node),
see Fig. 3. Since the four arrays, FNext[], FPrev[], FMember[], and FStart[], are used in the
underlying Crochemore algorithm only for class refinement, and at the time of repetition reporting
they can be used safely (as long as they are properly “cleaned” after the use), we do not need any
extra memory.

Thus the variant A does not need any extra memory as each search tree is “destroyed” after the
runs have been reported, however there is an extra penalty of traversing a branch of the search tree
for each repetition reporting, i.e. an extra O(log n) steps, leading to the complexity of O(n log2 n).

4.2 Variant B

In this variant all repetitions for all levels are collected, joined into runs, and reported together at
the end.

p1 p2

search tree
for period p1

search tree
for period p2

RunLeft [ ]

RunRight [ ]

Run_s [ ]

Run_d [ ]

Run_p [ ]

Figure 4: Data structures for Variant B.

The basic principles are the same as for variant A. However, for each level we build a separate
search tree and keep it till the repetitions of all levels (periods) have been reported. We cannot use
any of the data structures from the underlying Crochemore algorithm as we did for variant A, so the
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memory requirement grows by additional 5*n machine words. The time-complexity is the same as
for variant A, i.e. O(n log2 n).

How do we know that all the runs can fit into the search trees with n nodes together? We do not
know, for it is just a conjecture that the maximum number of runs < n. However, if we run out of the
space (there is a safeguard), we will have found a counterexample to the conjecture on the maximum
number of runs (see e.g. [CI08]).

4.3 Variant C

In this variant all repetitions for all levels are collected, joined into runs, and reported together at
the end.

Buckets [ ]

p1 d1

p2 d2

s

RunLast [ ]   ( reuse FNext [ ] )

Run_s [ ]  ( reuse FPrev [ ] )

p2

s

Figure 5: Data structures for Variant C.

The repetitions are collected in a simple data structure consisting of an array Buckets[]. In the
bucket Buckets[s] we store a simple singly-linked list of all repetitions that start at position s. To
avoid as much as possible dynamic allocation, so-called “allocation-from-arena” technique is used for
the linked lists (Buckets[] is allocated with other structures) and 3*N words is allocated in chunks
as needed. The memory requirement for collecting and storing all the repetitions is ≤ 4n∗ log n words,
however an expected memory requirement is 4n words as the expected number of repetitions is n (3n
for the links, n for the buckets).

After all repetitions had been reported and collected, Buckets[] is traversed from left to right
and all repetitions are joined into runs. In another traversal, the runs can be reported. During
the traversal, everything to the left of the current index are runs, while everything to the right and
including the current index are repetitions. For the joining business, we need for each period to
remember the rightmost run with that period, that is the role of the array RunLast[] (we can reuse
FNext[]). Thus when traversing the linked list in the bucket Buckets[i] and currently dealing with
a repetition with period p2, RunLast[p2] points to the last run of period p2 so we can decide if
the current repetition is to be “promoted” to a run (with a zero tail), or joined with the run. Since
the starting position of the last run of period p2 is not stored in the run, we need one more array
Run_s[] in which we store the starting position (we can reuses FPrev[]).

Since storing a repetition in Buckets[] takes a constant time, and there are O(n log n) repetitions,
and since the joining business is also constant time, the overall time complexity is O(n log n) +
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O(n log n), i.e. O(n log n).

5 Experimental results

Implementations of the three variants were compared as to their performance. The testing was rather
informal, just to give indication how the three variants compare.
Hardware: Sony VAIO laptop with Intel Core-2 Duo CPU T5800 @ 2.00 GHz, 4GB of RAM
Software: Windows Vista Home Premium SP1. Code was written in C++ and was compiled using
the GNU g++ compiler.
Each run was repeated five times, the minimum numbers are recorded in the following table (ran-
dom2.txt is a file of random strings on a binary alphabet, while random21.txt is a file of random
strings on an alphabet of size 21):

Data set File name String length
Time (seconds)

variant Bvariant A variant C
DNA dna.dna4 510976 110.15105.87 3.12

English bible.txt 4047392 62.6563.27 23.90
Fibonacci fibo.txt 305260 177.00173.30 2.39
Periodic fss.txt 304118 168.78159.61 2.44
Protein p1Mb.txt 1048576 53.2347.93 5.15
Protein p2Mb.txt 2097152 189.98189.20 11.42

Random random2.txt 510703 189.28193.01 4.42
Random random21.txt 510703 7.467.69 1.89

The following table records the performance averaged per a character of the input string:

Data set File name
Time ( sec / letter)

variant Bvariant A variant C
DNA dna.dna4 215.57207.18 6.11

English bible.txt 15.4815.63 5.91
Fibonacci fibo.txt 579.83567.70 7.82
Periodic fss.txt 554.98524.84 8.01
Protein p1Mb.txt 50.7645.71 4.91
Protein p2Mb.txt 90.5990.22 5.45

Random random2.txt 370.62377.93 8.64
Random random21.txt 14.6015.06 3.70

Overall average 236.55230.53 6.32

The results allow for a quick conclusion:

1. Overall, variant C is significantly faster than variants A and B. In fact by 3643 %!
2. Even though variant A requires less additional memory, speed-wise does not do much better

than B.
3. The speed of variants A and B is not proportional to the string length. Rather, it mostly

depends on the type of the string. It works better on strings with large alphabet size and low
periodicity. This is intuitively clear, as for high periodicity strings the height of the search trees
are large.
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6 Conclusion and further research

We extended Crochemore repetition algorithm to compute runs. Of the three variants, variant C is by
far more efficient time-wise, but requiring O(n log n) additional memory. However, its performance
warranties further investigation and an implementation that further reduces memory requirements.
Variant C should be the one used for the parallelization. Let us remark that variant C could be used
as an extension of any repetition algorithm.
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