CS3DB3/SE4DB3/SE6M03 TUTORIAL

Xiao Jiao Wang Mar 13/15,2013

Outline

- Exercise 1: find all keys
 - Armstrong's Axioms
 - Exercise 1
- Exercise 2: Compute B⁺
 - Closure Test
 - Exercise 2
- Exercise 3: Minimal(Canonical) Cover
 - \bullet Properties of F_c
 - Compute minimal cover
 - Exercise 3
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Armstrong's Axioms

X, Y, Z are set of attributes

- ♦ **Reflexivity**: if $X \supseteq Y$, then $X \rightarrow Y$
- **Augmentation**: if $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
- ♦ **Transitivity**: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- **Union**: if $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- ◆ **Decomposition**: if $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

Exercise 1: Find all keys

- Relation R(A,B,C,D,E) with FDs:
- ◊ {A→BC, CD→E, B→D, E→A}
- Show E and BC are keys

Armstrong's Axioms

1. Reflexivity: if $X \supseteq Y$, then $X \rightarrow Y$

- **2. Augmentation**: if $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
- **3. Transitivity**: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- **4. Union**: if $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- **5. Decomposition**: if $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

Closure Test

- Compute the closure of the attributes B denoted B⁺

 - Induction: Look for an FD's left side X that is a subset of the current B⁺. If the FD is X→Y, add Y to B⁺.
 - ◊ If Z is in B⁺, then B→Z holds.

Exercise 2: Compute B⁺

- Consider the following set F of functional dependencies on the relation schema r (A,B,C,D,E,F):
 - $A \rightarrow BCD$ $BC \rightarrow DE$ $B \rightarrow D$ $D \rightarrow A$

Q: Compute B⁺

Minimal(Canonical) Cover

- A minimal cover F_c must have the following properties:
 - $\,\,$ No functional dependency in $\rm F_c$ contains an extraneous attribute.
 - e.g. Given AB \rightarrow C and B \rightarrow C, then A is extraneous in AB \rightarrow C because B \rightarrow C logically implies AB \rightarrow C.
 - - e.g. Given $A \rightarrow BC$ and $A \rightarrow B$, then we can replace these two with $A \rightarrow BC$.

Compute Minimal Cover

 $F_c = F$

Repeat

Use the union rule to replace any dependencies in F_c of the form $\alpha 1 \rightarrow \beta 1$ and $\alpha 1 \rightarrow \beta 2$ with $\alpha 1 \rightarrow \beta 1\beta 2$.

Find a functional dependency $\alpha \rightarrow \beta$ in F_c with an extraneous attribute either in α or in β .

If an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$.

Until Fc does not change.

Exercise 3: Compute Minimal Cover

 Consider the following set F of functional dependencies on the relation schema r (A,B,C,D,E,F):

 $A \rightarrow BCD$ $BC \rightarrow DE$ $B \rightarrow D$ $D \rightarrow A$

Q: Compute a minimal cover for the above set of functional dependencies F; give each step of your derivation with an explanation.