On Erdős conjecture for multiplicities
Antoine Deza, Frantisek Franek, and Min Jing Liu
Advanced Optimization Laboratory
Department of Computing and Software
McMaster University, Hamilton, Ontario, Canada
Table 1 The combination case used for produce 7-cliques
i |
combination
of set |
1 |
{7} |
2 |
{1,6}
{2,5} {3, 4} |
3 |
{1,1,5}
{1,2,4} {1, 3, 3} {2,2,3} |
4 |
{1,1,1,4}{1,1,2,3}{1,2,2,2} |
5 |
{1,1,1,1,3}{1,1,1,2,2} |
6 |
{1,1,1,1,1,2} |
7 |
{1,1,1,1,1,1,1} |
Table 2 The coefficient of Si(X; F).
t |
s1 |
s2 |
s3 |
s4 |
s5 |
s6 |
s7 |
4 |
7 |
6 |
1 |
|
|
|
|
5 |
15 |
25 |
10 |
1 |
|
|
|
6 |
31 |
90 |
65 |
15 |
1 |
|
|
7 |
63 |
301 |
350 |
140 |
21 |
1 |
|
8 |
127 |
966 |
1701 |
1050 |
266 |
28 |
1 |
Table 3 The coefficient of ki(X; F)
t |
k1 |
k2 |
k3 |
k4 |
k5 |
k6 |
k7 |
k8 |
4 |
1 |
14 |
36 |
24 |
|
|
|
|
5 |
1 |
30 |
150 |
240 |
120 |
|
|
|
6 |
1 |
62 |
540 |
1560 |
1800 |
720 |
|
|
7 |
1 |
126 |
1806 |
8400 |
16800 |
15120 |
5040 |
|
8 |
1 |
254 |
5796 |
40824 |
126000 |
191520 |
141120 |
40320 |
The relationship between x_i and corresponding coefficient in S_i
0 means “>”, and 1 means “=”; eg x0 > x1 = x2 > x3 then “010”
S_2 |
|
|
S_5 |
|
|
coe1 |
0 |
2 |
coe4 |
0000 |
120 |
|
1 |
1 |
|
0001 |
60 |
S_3 |
|
|
|
0010 |
60 |
coe2 |
00 |
6 |
|
0011 |
20 |
|
01 |
3 |
|
0100 |
60 |
|
10 |
3 |
|
0101 |
30 |
|
11 |
1 |
|
0110 |
20 |
S_4 |
|
|
|
0111 |
5 |
coe3 |
000 |
24 |
|
1000 |
60 |
|
001 |
12 |
|
1001 |
30 |
|
010 |
12 |
|
1010 |
30 |
|
011 |
4 |
|
1011 |
10 |
|
100 |
12 |
|
1100 |
20 |
|
101 |
6 |
|
1101 |
10 |
|
110 |
4 |
|
1110 |
5 |
|
111 |
1 |
|
1111 |
1 |
Testing Result:
Table 1: Using a full family, The number of i - tuples by using two approaches:
S_i is the number of i-tuples by using the newest approaches; s_i(old) is the number of i-tuples by using the old approaches[1].
j |
3 |
4 |
5 |
6 |
S1 |
7 |
15 |
31 |
63 |
S1(old) |
7 |
15 |
31 |
63 |
S2 |
42 |
210 |
930 |
3,906 |
S2(old) |
42 |
210 |
930 |
3,906 |
S3 |
210 |
2,730 |
26,970 |
238,266 |
S3(old) |
210 |
2,730 |
26,970 |
238,266 |
S4 |
840 |
32,760 |
755,160 |
14,295,960 |
S4(old) |
840 |
32,760 |
755,160 |
14,295,960 |
S5 |
2520 |
360,360 |
20,389,320 |
843,461,640 |
S5(old) |
2520 |
360,360 |
20,389,320 |
843,461,640 |
S6 |
5040 |
3,603,600 |
530,122,320 |
48,920,775,120 |
S6(old) |
5040 |
3,603,600 |
530,122,320 |
48,920,775,120 |
S7 |
5040 |
32,432,400 |
13,253,058,000 |
2,788,484,181,840 |
S7(old) |
5040 |
32,432,400 |
13,253,058,000 |
2,788,484,181,840 |
c5 = 0.885833698 * 2 ^ (-9); @(10,{1,3,4,7,8,10})
|
1 |
2 |
3 |
4 |
S_T |
517 |
134970 |
17273850 |
1009617840 |
S’_T |
506 |
125730 |
14734170 |
742203000 |
c6 = 0.744442503 * 2 ^(-14) @ (10,{1,3,4,7,8})
|
1 |
2 |
3 |
4 |
5 |
S_T |
505 |
125010 |
14562090 |
726780600 |
13191935400 |
S’_T |
518 |
135726 |
17463606 |
1028265840 |
26106252480 |
c7 =0.686897717 * 2 ^ (-20) @(11,{3,4,7,8,10,11})
|
1 |
2 |
3 |
4 |
5 |
6 |
S_T |
1002 |
490050 |
113148090 |
11590147800 |
5.06501E+11 |
1.46774E+13 |
S’_T |
1045 |
556842 |
146860362 |
17896958640 |
9.50437E+11 |
2.13599E+13 |
c8 =0.70014091 * 2 ^ (-27) @ (12,{1,3,4,7,8,11,12}) (No blue search) (Link to the select testing seed)
[1] Franek, F.: A note on Erdős conjecture on multiplicities of complete subgraphs { lower upper bound for cliques of size 6. Combinatorica, No. 3, Vol. 22, 451-454 (2002)