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Hyperplane Arrangements with Large Average Diameter

Antoine Deza and Feng Xie

Abstract. The largest possible average diameter of a bounded cell of a simple
hyperplane arrangement is conjectured to be not greater than the dimension.
We prove that this conjecture holds in dimension 2, and is asymptotically tight
in fixed dimension. We give the exact value of the largest possible average
diameter for all simple arrangements in dimension 2, for arrangements having
at most the dimension plus 2 hyperplanes, and for arrangements having 6
hyperplanes in dimension 3. In dimension 3, we give lower and upper bounds
which are both asymptotically equal to the dimension.

1. Introduction

Let A be a simple arrangement formed by n hyperplanes in dimension d. We
recall that an arrangement is called simple if n ≥ d + 1 and any d hyperplanes
intersect at a unique distinct point. The number of bounded cells (closures of the
bounded connected components of the complement) of A is I =

(
n−1

d

)
. Let δ(A)

denote the average diameter of a bounded cell Pi of A; that is,

δ(A) =
∑i=I

i=1 δ(Pi)
I

where δ(Pi) denotes the diameter of Pi, i.e., the smallest number such that any
two vertices of Pi can be connected by a path with at most δ(Pi) edges. Let
∆A(d, n) denote the largest possible average diameter of a bounded cell of a simple
arrangement defined by n inequalities in dimension d. Deza, Terlaky and Zinchenko
conjectured that ∆A(d, n) ≤ d.

Conjecture 1.1 ([5]). The average diameter of a bounded cell of a simple
arrangement defined by m inequalities in dimension n is not greater than n.
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It was showed in [5] that if the conjecture of Hirsch holds for polytopes in
dimension d, then ∆A(d, n) would satisfy ∆A(d, n) ≤ d+2d/(n−1). In dimension 2
and 3, we have ∆A(2, n) ≤ 2+2/(n−1) and ∆A(3, n) ≤ 3+4/(n−1). We recall that
a polytope is a bounded polyhedron and that the conjecture of Hirsch, formulated
in 1957 and reported in [3], states that the diameter of a polyhedron defined by n
inequalities in dimension d is not greater than n− d. The conjecture does not hold
for unbounded polyhedra.

Conjecture 1.1 can be regarded a discrete analogue of a result of Dedieu, Mala-
jovich and Shub [4] on the average total curvature of the central path associated to
a bounded cell of a simple arrangement. We first recall the definitions of the central
path and of the total curvature. For a polytope P = {x : Ax ≥ b} with A ∈ <n×d,
the central path corresponding to min{cTx : x ∈ P} is a set of minimizers of
min{cTx + µf(x) : x ∈ P} for µ ∈ (0,∞) where f(x) = −∑n

i=1 ln(Aix − bi)—
the standard logarithmic barrier function [12]. Intuitively, the total curvature [14]
is a measure of how far off a certain curve is from being a straight line. Let
ψ : [α, β] → <d be a C2

(
(α− ε, β + ε)

)
map for some ε > 0 with a non-zero deriv-

ative in [α, β]. Denote its arc length by l(t) =
∫ t

α
‖ψ̇(τ)‖ dτ , its parametrization by

the arc length by ψarc = ψ ◦ l−1 : [0, l(β)] → <d, and its curvature at the point t by
κ(t) = ψ̈arc(t). The total curvature is defined as

∫ l(β)

0
‖κ(t)‖ dt. The requirement

ψ̇ 6= 0 insures that any given segment of the curve is traversed only once and allows
to define a curvature at any point on the curve. Let λc(A) denote the average
associated total curvature of a bounded cell Pi of a simple arrangement A; that is,

λc(A) =
i=I∑

i=1

λc(Pi)
I

where λc(P ) denotes the total curvature of the central path corresponding to the
linear optimization problem min{cTx : x ∈ P}. Dedieu, Malajovich and Shub [4]
demonstrated that λc(A) ≤ 2πd for any fixed c. Keeping the linear optimization ap-
proach but replacing central path following interior point methods by simplex meth-
ods, Haimovich’s probabilistic analysis of the shadow-vertex simplex algorithm,
see [1, Section 0.7], showed that the expected number of pivots is bounded by d.
Note that while Dedieu, Malajovich and Shub consider only the bounded cells (the
central path may not be defined over some unbounded ones), Haimovich considers
the average over bounded and unbounded cells. While the result of Haimovich and
Conjecture 1.1 are similar in nature, they differ in some aspects: Conjecture 1.1
considers the average over bounded cells, and the number of pivots could be smaller
than the diameter for some cells.

In Section 4 we consider a simple hyperplane arrangement A∗d,n combinatorially
equivalent to the cyclic hyperplane arrangement which is dual to the cyclic polytope,
see [8] for some combinatorial properties of the (projective) cyclic hyperplane ar-
rangement. We show that the bounded cells of A∗d,n are mainly combinatorial cubes
and, therefore, that the dimension d is an asymptotic lower bound for ∆A(d, n) for
fixed d. In Section 2, we consider the arrangement Ao

2,n resulting from the addition
of one hyperplane to A∗2,n−1 such that all the vertices are on one side of the added
hyperplane. We show that the arrangement Ao

2,n maximizes the average diame-
ter and, thus, Conjecture 1.1 holds in dimension 2. In Section 3, considering a
3-dimensional analogue, we give lower and upper bounds asymptotically equal to 3
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for ∆A(3, n). The combinatorics of the addition of a (pseudo) hyperplane to the
cyclic hyperplane arrangement is studied in details in [16]. For example, the ar-
rangements A∗2,6 and Ao

2,6 correspond to the top (and bottom) element of the higher
Bruhat order B(5, 2) given in [16, Figure 3]. For polytopes and arrangements, we
refer to the books of Edelsbrunner [6], Grünbaum [10] and Ziegler [17].

2. Line arrangements with maximal average diameter

For n ≥ 4, we consider the simple line arrangement Ao
2,n made of the 2 lines

h1 and h2 forming, respectively, the x1 and x2 axis, and the (n − 2) lines defined
by their intersections with h1 and h2. We have hk ∩ h1 = {1 + (k − 3)ε, 0} and
hk ∩ h2 = {0, 1 − (k − 3)ε} for k = 3, 4, . . . , n − 1, and hn ∩ h1 = {2, 0} and
hn∩h1 = {0, 2+ε} where ε is a constant satisfying 0 < ε < 1/(n−3). See Figure 1
for an arrangement combinatorially equivalent to Ao

2,7.

Proposition 2.1. For n ≥ 4, the bounded cells of the arrangement Ao
2,n consist

of (n − 2) triangles,
(
(n − 1)(n − 4)

)
/2 4-gons, and 1 n-gon. We have δ(Ao

2,n) =
2− (2dn/2e)/((n− 1)(n− 2)

)
for n ≥ 4.

Proof. The first (n− 1) lines of Ao
2,n clearly form a simple line arrangement

A∗2,n−1 which bounded cells are (n − 3) triangles and
(
n−3

2

)
4-gons. The last line

hn adds 1 n-gon, 1 triangle and (n − 4) 4-gons. Since the diameter of a k-gon

h1

h2

Figure 1. An arrangement combinatorially equivalent to Ao
2,7.
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is bn/2c, we have δ(Ao
2,n) = 2 − 2

(
(n − 2) − (bn/2c − 2)

)
/
(
(n − 1)(n − 2)

)
=

2− (2dn/2e)/((n− 1)(n− 2)
)
. ¤

Exploiting the fact that a line arrangement contains at least n − 2 triangles
(at least n − d simplices for a simple hyperplane arrangement [13]) and a bound
on the number of facets on the boundary of the union of the bounded cells, we
can show that Ao

2,n attains the largest possible average diameter of a simple line
arrangement.

Proposition 2.2. For n ≥ 4, the largest possible average diameter of a bounded
cell of a simple line arrangement satisfies ∆A(2, n) = 2−(2dn/2e)/((n−1)(n−2)

)
.

Proof. Let f1(A) denote the number of bounded edges of a simple arrange-
ment A of n lines, and let f1(Pi) denote the number of edges of a bounded cell

Figure 2. An arrangement combinatorially equivalent to Ao
3,7.
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Pi of A. Let call an edge of A external if it belongs to exactly one bounded
cell, and let f0

1 (A) denote the number of external edges of A. Let podd(A) be
the number of bounded cells having an odd number of edges. We have: I ×
δ(A) =

∑I
i=1 δ(Pi) =

∑I
i=1

⌊(
f1(Pi)

)/
2
⌋

=
∑I

i=1

(
f1(Pi)

)/
2 − (

podd(A)
)
/2 =(

2f1(A) − f0
1 (A) − podd(A)

)
/2. Since f1(A) = n(n − 2), to maximize δ(A) is

equivalent to minimize f0
1 (A) + podd(A). We have f0

1 (Ao
2,n) = 2(n − 1), and this

is the best possible as the number of external edges f0
1 (A) is at least 2(n − 1),

see [2]. For even n, we have podd(Ao
2,n) = n − 2, and this is the best possi-

ble since at least n − 2 bounded cells of a simple line arrangement are triangles.
Thus, ∆A(2, n) = δ(Ao

2,n) for even n. We have f0
1 (A) + podd(A) is even since

f0
1 (A) + podd(A) = 2f1(A)− 2

∑I
i=1 δ(Pi). It implies, since f0

1 (A) ≥ 2(n− 1) and
podd(A) ≥ n−2, that f0

1 (A)+podd(A) ≥ 2(n−1)+(n−2)+1 = f0
1 (Ao

2,n)+podd(Ao
2,n)

for odd n. Thus, ∆A(2, n) = δ(Ao
2,n) for odd n. ¤

3. Plane arrangements with large average diameter

For n ≥ 5, we consider the simple plane arrangement Ao
3,n made of the the 3

planes h1, h2 and h3 corresponding, respectively, to x3 = 0, x2 = 0 and x1 = 0,
and (n − 3) planes defined by their intersections with the x1, x2 and x3 axis. We
have hk ∩ h1 ∩ h2 = {1 + 2(k − 4)ε, 0, 0}, hk ∩ h1 ∩ h3 = {0, 1 + (k − 4)ε, 0} and
hk∩h2∩h3 = {0, 0, 1− (k−4)ε} for k = 4, 5, . . . , n−1, and hn∩h1∩h2 = {3, 0, 0},
hn∩h1∩h3 = {0, 2, 0} and hn∩h2∩h3 = {0, 0, 3+ε} where ε is a constant satisfying
0 < ε < 1/(n−4). See Figure 2 for an illustration of an arrangement combinatorially
equivalent toAo

3,7 where, for clarity, only the bounded cells belonging to the positive
orthant are drawn.

Proposition 3.1. For n ≥ 5, the bounded cells of the arrangement Ao
3,n consist

of (n− 3) tetrahedra, (n− 3)(n− 4)− 1 cells combinatorially equivalent to a prism
with a triangular base,

(
n−3

3

)
cells combinatorially equivalent to a cube, and 1 cell

combinatorially equivalent to a shell Sn with n facets and 2(n − 2) vertices. See
Figure 3 for an illustration of S7. We have δ(Ao

3,n) = 3− 6/(n− 1) +
(
6(bn/2c −

2)
)
/
(
(n− 1)(n− 2)(n− 3)

)
for n ≥ 5.

Proof. For 4 ≤ k ≤ n−1, let A∗3,k denote the arrangement formed by the first
k planes of Ao

3,n. See Figure 4 for an arrangement combinatorially equivalent to
A∗3,6. We first show by induction that the bounded cells of the arrangement A∗3,n−1

consist of (n − 4) tetrahedra, (n − 4)(n − 5) combinatorial triangular prisms and(
n−4

3

)
combinatorial cubes. We use the following notation to describe the bounded

cells of A∗3,k−1: T4 for a tetrahedron with a facet on h1; P4, respectively P¦, for
a combinatorial triangular prism with a triangular, respectively square, facet on

Figure 3. A polytope combinatorially equivalent to the shell S7.
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h1; C¦ for a combinatorial cube with a square facet on h1; and C, respectively T
and P , for a combinatorial cube, respectively tetrahedron and triangular prism,
not touching h1. When the plane hk is added, the cells T4, P4, P¦, and C¦
are sliced, respectively, into T and P4, P and P4, P and C¦, and C and C¦.
In addition, one T4 cell and (k − 4) P¦ cells are created by bounding (k − 3)
unbounded cells of A∗3,k−1. Let c(k) denotes the number of C cells of A∗3,k, similarly
for C¦, T , T4, P , P4 and P¦. For A∗3,4 we have t4(4) = 1 and t(4) = p(4) =
p4(4) = p¦(4) = c(4) = c(4) = 0. The addition of hk removes and adds one
T4, thus, t4(k) = 1. Similarly, all P¦ are removed and (k − 4) are added, thus,
p¦(k) = (k−4). Since t(k) = t(k−1)+t4(k−1) and p4(k) = p4(k−1)+t4(k−1),
we have t(k) = p4(k) = (k − 4). Since p(k) = p(k − 1) + p4(k − 1) + p¦(k − 1),
we have p(k) = (k − 4)(k − 5). Since c¦(k) = c¦(k − 1) + p¦(k − 1), we have
c¦(k) =

(
k−4
2

)
. Since c(k) = c(k − 1) + c¦(k − 1), we have c(k) =

(
k−4
3

)
. Therefore

the bounded cells of A∗3,n−1 consist of t(n − 1) + t4(n − 1) = (n − 4) tetrahedra,
p(n− 1) + p4(n− 1) + p¦(n− 1) = (n− 4)(n− 5) combinatorial triangular prisms,
and c(n−1)+c¦(n−1) =

(
n−4

3

)
combinatorial cubes. The addition of hn to A∗3,n−1

creates 1 shell Sn with 2 triangular facets belonging to h2 and h3 and 1 square
facet belonging to h1. Besides Sn, all the bounded cells created by the addition of
hn are below h1. One P¦ and n − 5 combinatorial cubes are created between h2

and h3. The other bounded cells are on the negative side of h3: n − 5 P¦ and 1
T4 between hn and hn−1, and n − k − 5 C¦ and 1 P4 between hn−k and hn−k−1

for k = 1, . . . , n − 5. In total, we have 1 tetrahedron,
(
n−4

2

)
combinatorial cubes

and (2n − 9) combinatorial triangular prisms below h1. Since the diameter of a
tetrahedron, triangular prism, cube and n-shell is, respectively, 1, 2, 3 and bn/2c, we
have δ(Ao

3,n) = 3−6
(
2(n−3)+(n−3)(n−4)−1−(bn/2c−3)

)
/
(
(n−1)(n−2)(n−3)

)
=

3− 6/(n− 1) +
(
6(bn/2c − 2)

)
/
(
(n− 1)(n− 2)(n− 3)

)
. ¤

Remark 3.1. There is only one combinatorial type of simple arrangement of 5
planes, and we have ∆A(3, 5) = δ(Ao

3,5) = 3/2. Among the 43 simple combinatorial
types of arrangements formed by 6 planes [7], the maximum average diameter is 2
while δ(Ao

3,6) = 1.8. See Figure 5 for an illustration of the combinatorial type of
one of the two simple arrangements with 6 planes maximizing the average diameter.
The far away vertex on the right and 3 bounded edges incident to it are cut off
(same for the far away vertex on the left) so the 10 bounded cells of the arrangement
(3 tetrahedra, 4 simplex prisms, and 3 6-shells) appear not too small.

Proposition 3.2. For n ≥ 4, the largest possible average diameter of a bounded
cell of a simple arrangement of n planes satisfies 3−6/(n−1)+

(
6(bn/2c−2)

)/(
(n−

1)(n− 2)(n− 3)
) ≤ ∆A(3, n) ≤ 3 +

(
4(2n2 − 16n+ 21)

)/(
3(n− 1)(n− 2)(n− 3)

)
.

Proof. Let f2(A) denote the number of bounded facets of a simple arrange-
ment A of n planes, and let f2(Pi) denote the number of facets of a bounded cell
Pi of A. Let call a facet of A external if it belongs to exactly one bounded cell,
and let f0

2 (A) denote the number of external facets of A. We have:

I × δ(A) =
I∑

i=1

δ(Pi) ≤
I∑

i=1

(⌊
2f2(Pi)

3

⌋
− 1

)
≤

I∑

i=1

2f2(Pi)
3

− n− 3
3

− I

=
4f2(A)− 2f0

2 (A)− n+ 3− 3I
3
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Figure 4. An arrangement combinatorially equivalent to A∗3,6.

where the second inequality holds since at least (n − 3) bounded cells of A are
simplices [13]. Since f2(A) = n

(
n−2

2

)
and f0

2 (A) is at least
(
n(n−2)

)/
3+2, see [2],

we have δ(A) ≤ 3 + 4(2n2 − 16n+ 21)/3(n− 1)(n− 2)(n− 3). ¤

4. Hyperplane arrangements with large average diameter

After recalling in Section 4.1 the unique combinatorial structure of a simple
arrangement formed by d + 2 hyperplanes in dimension d, we show in Section 4.2
that the cyclic hyperplane arrangement A∗d,n contains

(
n−d

d

)
cubical cells for n ≥ 2d.

It implies that the average diameter δ(A∗d,n) is arbitrarily close to d for n large

Figure 5. An arrangement formed by 6 planes maximizing the
average diameter.



110 A. DEZA AND F. XIE

Figure 6. An arrangement combinatorially equivalent to A3,5.

enough. Thus, the dimension d is an asymptotic lower bound for ∆A(d, n) for fixed
d.

4.1. The average diameter of a simple arrangement with d + 2 hy-
perplanes. Let Ad,d+2 be a simple arrangement formed by d + 2 hyperplanes in
dimension d. Besides simplices, the bounded cells of Ad,d+2 are simple polytopes
with d+2 facets corresponding to the product of a k-simplex with a (d−k)-simplex
for k = 1, . . . , bd/2c, see for example [10]. We recall one way to show that the com-
binatorial type of the arrangement of d + 2 hyperplanes in dimension d is unique.
The affine Gale dual, see [16, Chapter 6], of the d + 3 vectors in dimension d + 1
corresponding to the linear arrangement associated to Ad,d+2 (and the hyperplane
at infinity) forms a configuration of d + 3 distinct signed points on a line; i.e., is
unique up to relabeling and reorientation. We also recall the combinatorial struc-
ture of Ad,d+2 as some of the notions presented are used in Section 4.2. Since there
is only one combinatorial type of simple arrangement with d + 2 hyperplanes, the
arrangement Ad,d+2 can be obtained from the simplex Ad,d+1 by cutting off one
its vertices v with the hyperplane hd+2. As a result, a prism P with a simplex
base is created. Let us call top base the base of P which belongs to hd+2 and
assume, without loss of generality, that the hyperplane containing the bottom base
of P is hd+1. Besides the simplex defined by v and the vertices of the top base
of P , the remaining d bounded cells of Ad,d+2 are between hd+2 and hd+1. See
Figure 6 for an illustration the combinatorial structure of A3,5. As the projection
of Ad,d+2 on hd+1 is combinatorially equivalent to Ad−1,d+1, the d bounded cells
between hd+2 and hd+1 can be obtained from the d bounded cells of Ad−1,d+1 by
the shell-lifting of Ad−1,d+1 over the ridge hd+1 ∩hd+2; that is, besides the vertices
belonging to hd+1 ∩ hd+2, all the vertices in hd+1 (forming Ad−1,d+1) are lifted.
See Figure 7 where the skeletons of the d+ 1 bounded cells of Ad,d+2 are given for
d = 2, 3, . . . , 6, and the shell-lifting of the bounded cells is indicated by an arrow.
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d=2 d=3 d=4 d=5 d=6

Figure 7. The skeletons of the d+ 1 bounded cells of Ad,d+2 for
d = 2, 3, . . . , 6.

The vertices not belonging to hd+1 are represented in black in Figure 7, e.g., the
simplex cell containing v is the one made of black vertices. The bounded cells of
Ad,d+2 are 2 simplices and a pair of product of a k-simplex with a (d− k)-simplex
for k = 1, . . . , bd/2c for odd d. For even d the product of the d/2-simplex with
itself is present only once. Since all the bounded cells, besides the 2 simplices, have
diameter 2, we have δ(Ad,d+2) =

(
2 + 2(d− 1)

)/
(d+ 1).

Proposition 4.1. We have ∆A(d, d+ 2) = δ(Ad,d+2) = 2d/(d+ 1).
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4.2. Hyperplane arrangements with large average diameter. We con-
sider the simple hyperplane arrangement A∗d,n combinatorially equivalent to the
cyclic hyperplane and formed by the following n hyperplanes hd

k for k = 1, 2, . . . , n.
The hyperplanes hd

k = {x : xd+1−k = 0} for k = 1, 2, . . . , d form the positive or-
thant, and the hyperplanes hd

k for k = d+1, . . . , n are defined by their intersections
with the axes x̄i of the positive orthant. We have hd

k∩ x̄i = {0, . . . , 0, 1+(d− i)(k−
d−1)ε, 0, . . . , 0} for i = 1, 2 . . . , d−1 and hd

k∩ x̄d = {0, . . . , 0, 1−(k−d−1)ε} where
ε is a constant satisfying 0 < ε < 1/(n − d − 1). The combinatorial structure of
A∗d,n can be derived inductively. All the bounded cells of A∗d,n are on the positive
side of hd

1 and hd
2 with the bounded cells between hd

2 and hd
3 being obtained by

the shell-lifting of a combinatorial equivalent of A∗d−1,n−1 over the ridge hd
2 ∩ hd

3,
and the bounded cells on the other side of hd

3 forming a combinatorial equivalent
of A∗d,n−1. The intersection A∗d,n ∩hd

k is combinatorially equivalent to A∗d−1,n−1 for
k = 2, 3, . . . , d and removing hd

2 from A∗d,n yields an arrangement combinatorially
equivalent to A∗d,n−1. See Figure 4 for an arrangement combinatorially equivalent
to A∗3,6.

Proposition 4.2. The arrangement A∗d,n contains
(
n−d

d

)
cubical cells for

n ≥ 2d. We have δ(A∗d,n) ≥ d
(
n−d

d

)
/
(
n−1

d

)
for n ≥ 2d. It implies that for d

fixed, ∆A(d, n) is arbitrarily close to d for n large enough.

Proof. The arrangements A∗n,2 and A∗n,3 contain, respectively,
(
n−2

2

)
and(

n−3
3

)
cubical cells. The arrangement A∗d,2d has 1 cubical cell. Since A∗d,n is ob-

tained inductively from A∗d,n−1 by lifting A∗d−1,n−1 over the ridge hd
2 ∩hd

3, we count
separately the cubical cells between hd

2 and hd
3 and the ones on the other side

of hd
3. The ridge hd

2 ∩ hd
3 is an hyperplane of the arrangements A∗d,n ∩ hd

2 and
A∗d,n ∩ hd

3 which are both combinatorially equivalent to A∗d−1,n−1. Removing hd−1
2

from A∗d,n ∩ hd
2 yields an arrangement combinatorially equivalent to A∗d−1,n−2. It

implies that
(
(n−2)−(d−1)

d−1

)
cubical cells of A∗d,n ∩ hd

2 are not incident to the ridge
hd

2 ∩ hd
3. The shell-lifting of these

(
n−d−1

d−1

)
cubical cells (of dimension d − 1) cre-

ates
(
n−d−1

d−1

)
cubical cells between hd

2 and hd
3. As removing hd

2 from A∗d,n yields
an arrangement combinatorial equivalent to A∗d,n−1, there are

(
n−1−d

d

)
cubical cells

on the other side of hd
3. Thus, A∗d,n contains

(
n−d−1

d−1

)
+

(
n−d−1

d

)
=

(
n−d

d

)
cubical

cells. ¤

Proposition 4.2 can be slightly strengthened to the following proposition.

Proposition 4.3. Besides
(
n−d

d

)
cubical cells, the arrangement A∗d,n contains

(n− d) simplices and (n− d)(n− d− 1) bounded cells combinatorially equivalent to
a prism with a simplex base for n ≥ 2d. We have

∆A(d, n) ≥ 1 +
(d− 1)

(
n−d

d

)
+ (n− d)(n− d− 1)(

n−1
d

) for n ≥ 2d.

Proof. Similarly to Proposition 4.2, we can inductively count (n−d) simplices
and (n− d)(n− d− 1) bounded cells of A∗d,n combinatorially equivalent to a prism
with a simplex base. We have (n − 1) − (d − 1) simplices in A∗d,n ∩ hd

2 and, since
removing hd−1

2 from A∗d,n ∩hd
2 yields an arrangement combinatorially equivalent to
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A∗d−1,n−2, only one of these (n − d) simplices of A∗d,n ∩ hd
2 is incident to the ridge

hd
2 ∩ hd

3. Thus, between hd
2 and hd

3, we have 1 simplex incident to the ridge hd
2 ∩ hd

3

and (n− d− 1) cells combinatorially equivalent to a prism with a simplex base not
incident to the ridge hd

2∩hd
3. In addition, (n−d−1) cells combinatorially equivalent

to a prism with a simplex base are incident to the ridge hd
2 ∩ hd

3 and between hd
2

and hd
3. These (n−d−1) cells correspond to the truncations of the simplex A∗d,d+1

by hd
k for k = d+ 2, d+ 3, . . . , n. Thus, we have 2(n− d− 1) cells combinatorially

equivalent to a prism with a simplex base between hd
2 and hd

3. Since the other side
of hd

3 is combinatorially equivalent to A∗n−1,d, it contains (n− 1− d) simplices and
(n− d − 1)(n − d − 2) bounded cells combinatorially equivalent to a prism with a
simplex base. Thus, A∗d,n has (n−d−1)(n−d−2)+2(n−d−1) = (n−d)(n−d−1)
cells combinatorially equivalent to a prism with a simplex base and (n−d) simplices.
As a prism with a simplex base has diameter 2 and the diameter of a bounded cell
is at least 1, we have

δ(A∗d,n) ≥ d
(
n−d

d

)
+ 2(n− d)(n− d− 1) +

(
n−1

d

)− (
n−d

d

)− (n− d)(n− d− 1)(
n−1

d

)

for n ≥ 2d. ¤
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