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Abstract

This thesis deals with combinatorial properties of hyperplane arrange-

ments. In particular, we address a conjecture of Deza, Terlaky and Zinchenko

stating that the largest possible average diameter of a bounded cell of a simple

hyperplane arrangement is not greater than the dimension. We prove that this

conjecture is asymptotically tight in fixed dimension by constructing a family

of hyperplane arrangements containing mostly cubical cells. The relationship

with a result of Dedieu, Malajovich and Shub, the conjecture of Hirsch, and a

result of Haimovich are presented.

We give the exact value of the largest possible average diameter for all

simple arrangements in dimension two, for arrangements having at most the

dimension plus two hyperplanes, and for arrangements having six hyperplanes

in dimension three. In dimension three, we strengthen the lower and upper

bounds for the largest possible average diameter of a bounded cell of a simple

hyperplane arrangements.

Namely, let ∆A(d, n) denote the largest possible average diameter of a

bounded cell of a simple arrangement defined by n hyperplanes in dimension

d. We show that

• ∆A(2, n) = 2− 2dn
2
e

(n−1)(n−2)
for n ≥ 3,

• ∆A(d, d + 2) = 2d
d+1

,

• ∆A(3, 6) = 2,

• 3− 6
n−1

+
6(bn

2
c−2)

(n−1)(n−2)(n−3)
≤ ∆A(3, n) ≤ 3 + 4(2n2−16n+21)

3(n−1)(n−2)(n−3)
,

• ∆A(d, n) ≥ 1 +
(d−1)(n−d

d )+(n−d)(n−d−1)

(n−1
d )

for n ≥ 2d.
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We also address another conjecture of Deza, Terlaky and Zinchenko stating

that the minimum number Φ0
A(d, n) of facets belonging to exactly one bounded

cell of a simple arrangement defined by n hyperplanes in dimension d is at least

d
(

n−2
d−1

)
. We show that

• Φ0
A(2, n) = 2(n− 1) for n ≥ 4,

• Φ0
A(3, n) ≥ n(n−2)

3
+ 2 for n ≥ 5.

We present theoretical frameworks, including oriented matroids, and computa-

tional tools to check by complete enumeration the open conjectures for small

instances. Preliminary computational results are given.
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Notations

AT transpose of matrix A

IRd d dimensional Euclidean space

(IRd)∗ dual space of IRd

Pd d dimensional projective space

1 all 1 column vector

0 all 0 column vector

ei the unit vector along the i-th coordinate in IRd

‖v‖ the norm of vector v

f̈(t) the second derivative of function f with respect to variable t

Dep(V ) space of linear dependencies of a vector configuration

r-object object of dimension r

A simple arrangement

A d,n simple arrangement formed by n hyperplanes in IRd

A \ {h} arrangement obtained by removing the hyperplane h from A
A ∩ h intersection of A with the hyperplane h

fk(P ) number of k-faces of a polytope P

fk(A) number of k-faces of an arrangement A
f+

k (A) number of k-faces that are inside the envelope of an arrangement A
f 0

k (A) number of k-faces that are on the envelope of an arrangement A
δ(P ) diameter of a polytope P

δ(A) average diameter of a bounded cell of A
∆A(d, n) largest possible average diameter of a bounded cell of A d,n

Φ0
A(d, n) smallest possible number of external facets of A d,n

M oriented matroid

C circuit of an oriented matroid

χ chirotope

Λ(n, r) ordered r-subsets of n vectors in IRr
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Chapter 1

Preliminaries

1.1 Polytopes

An hyperplane is the set
{
x ∈ IRd | aTx = c

}
for some a ∈ IRd (a 6= 0) and

c ∈ IR. If the equality is replaced with inequality, we have a halfspace , which

is closed if the inequality is not strict. An hyperplane in IRd is isomorphic to

IRd−1.

Definition 1.1.1 A polyhedron is an intersection of finitely many closed half-

spaces. A polytope is a bounded polyhedron.

Let P be a d-polyhedron, i.e., a polyhdron of dimension d. A closed

halfspace is valid if P belongs to it. The hyperplane associated to a valid

halfspace is called a valid hyperplane. A face of P is the intersection of P with

some valid hyperplane. The 0-faces, 1-faces, (d− 2)-faces and (d− 1)-faces are

called vertices, edges, ridges and facets respectively. The number of k-faces of

P is denoted by fk(P ) for k = 0, . . . , d− 1 and, considering the improper face

P and the empty set, we have fd(P ) = f−1(P ) = 1.

1
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Besides being represented as the intersection of closed halfspaces – H-

representation – as in Definition 1.1.1, a polytope can also be represented as

the convex hull of its vertices – V-representation. The conversion between H-

representation and V-representation, also known as vertex enumeration or facet

enumeration, is a well-studied problem in computational geometry.

1.2 Arrangements

Definition 1.2.1 An arrangement A d,n in IRd is a family of n (n ≥ d + 1)

hyperplanes. The arrangement is simple if any d hyperplanes intersect at a

distinct point.

Definition 1.2.2 A linear arrangement consists of hyperplanes containing the

origin.

Remark 1.2.3 In a simple arrangement, no 2 hyperplanes are parallel to each

other and no d + 1 hyperplanes intersect at one point.

In this thesis we consider mainly simple arrangements. The d-polyhedra

defined by the hyperplanes of an arrangement A d,n are called the d-faces or

cells of A d,n. The k-faces of A d,n are the k-faces of its cells. Let fk(A d,n)

denote the number of k-faces for k = 0, . . . , d − 1 and let fd(A d,n) denote the

number of cells of A d,n.

The bounded facets belonging to the unbounded cells are called external,

and the facets belonging to 2 bounded cells are called internal. The k-faces

belonging to an external facet, respectively internal facet, are called external,

respectively internal, for k = 0, . . . , d − 2. Let f 0
k (A d,n) denote the number

2
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of external faces, and f+
k (A d,n) the number of internal ones. The number of

bounded cells is denoted by f+
d (A d,n).

General references for polytopes and hyperplanes arrangements are the

books of Edelsbrunner [14], Grunbaum [21] and Ziegler [38]. In the following,

we recall some properties used in this thesis as well as few proofs.

Theorem 1.2.4 For k = 0, 1, . . . , d, a simple arrangement A d,n has fk(A d,n) =
∑k

i=0

(
d−i
k−i

)(
n

d−i

)
k-faces.

Theorem 1.2.5 A simple arrangement A d,n has f+
d (A d,n) =

(
n−1

d

)
bounded

cells.

Proof. The proof is by induction on n and d. For d = 1 and n ≥ 2, we

have f+
d (A d,n) = n − 1 =

(
n−1

1

)
. For d ≥ 1 and n = d + 1, then f+

d (A d,n) =

1 =
(

d+1−1
d

)
as the only bounded cell is the d-simplex formed by the d + 1

hyperplanes. Assume that the statement holds for A d′,n′ with n′ ≤ n and

d′ ≤ d and one of the inequalities is strict. Then consider a simple arrangement

A d,n−1 which, by hypothesis, has
(

n−2
d

)
bounded cells. We add one hyperplane

to A d,n−1 to get a simple arrangement A d,n. The intersection of the newly

added hyperplane with A d,n−1 is a simple arrangement A d−1,n−1 which has,

by hypothesis,
(

n−2
d−1

)
(d− 1)-dimensional bounded cells, that is, d-dimensional

bounded facets, each of which gives rise to a new bounded cell on top of the

existing
(

n−2
d

)
bounded cells in A d,n−1. So we have f+

d (A d,n) =
(

n−2
d

)
+

(
n−2
d−1

)
=

(
n−1

d

)
. ¤

Lemma 1.2.6 A simple arrangement A d,n has n
(

n−2
d−1

)
bounded facets.

3
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Proof. For any hyperplane hi of A d,n, A d,n ∩ hi is a simple arrangement

A d−1,n−1. By Theorem 1.2.5 we have f+
d−1(A d,n ∩ hi) =

(
n−2
d−1

)
and, as the

bounded cells of A d,n ∩ hi correspond to the bounded facets of A d,n, there are

n
(

n−2
d−1

)
bounded facets in A d,n.

Lemma 1.2.7 A simple arrangement A d,n has
(

n
2

)(
n−3
d−2

)
bounded ridges .

Proof. For each hyperplane hi in A d,n (i = 1, 2, . . . , n), A d,n∩hi is a simple

arrangement A d−1,n−1. By Theorem 1.2.6, each A d,n ∩ hi has (n − 1)
(

n−3
d−2

)

(d− 1)-dimensional bounded facets, or d-dimensional bounded ridges in A d,n.

As each bounded ridge belongs to exactly 2 hyperplanes, we have 1
2
n(n−1)

(
n−3
d−2

)

bounded ridges. ¤

Roughly speaking, a projective arrangement is an arrangement in the

projective space Pd with one of the hyperplanes being at infinity. A projective

arrangement A d,n is near trivial if there is a point of Pd that is contained in all

hyperplanes of A d,n but one. We recall a fundamental result of Shannon [34].

Theorem 1.2.8 Let A d,n be a projective arrangement which is not near trivial

and let h be a hyperplane of A d,n. Then there are at least n− d− 1 simplicial

d-cells having no facet in h.

Corollary 1.2.9 A simple arrangement A d,n has at least n− d simplex cells.

Proof. By adding an hyperplane hn+1 at infinity to a simple (Euclidean)

arrangement A d,n, we obtain a not near trivial projective arrangement A d,n+1.

Applying Shannon’s Theorem 1.2.8 with h = hn+1, we get n+1−d−1 = n−d

simplicial cells in A d,n+1 having no facet in hn+1, i.e., n− d (bounded) simplex

cells in A d,n. ¤

4
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1.3 Fans

Definition 1.3.1 A fan in IRd is a set of nonempty polyhedral cones satisfying:

(1) Every nonempty face of a cone in the fan is also a cone in the fan.

(2) The intersection of any two cones in the fan is a face of both.

A complete fan is a fan that covers the whole space. A linear hyperplane

arrangement decomposes the space into a complete fan. A normal fan of a poly-

tope is a complete fan of which each cone is the set of linear functionals which

are maximal on some face of the polytope. Followed is the formal definition.

Definition 1.3.2 Let P be nonempty polytope in IRd. The normal fan of P is

the set of cones {NF | F is a nonempty face of P}, where

NF :=
{
c ∈ (IRd)∗ | F ⊆ {x ∈ P | c · x = max c · y : y ∈ P}} .

1.4 Zonotopes and linear arrangements

In Euclidean space, The Minkowski sum of two sets P and Q is the set resulting

from adding any point in P to any point in Q. i.e.,

P + Q := {p + q | p ∈ P,q ∈ Q} . (1.4.1)

Definition 1.4.1 A zonotope is the image of a cube under an affine projection

π : IRs → IRd, where π(x) = Px + z,
(
x ∈ IRs, z ∈ IRd, P ∈ IRd×s

)
.

5
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Let Cs = {x ∈ IRs | −1 ≤ xi ≤ 1, i = 1, 2, · · · , s} denote an s-cube and

write P = [p1,p2, · · · ,ps]. Then a zonotope can be represented as the set

π(Cs) = {Px + z | x ∈ Cs}

=

{
y ∈ IRd | y =

s∑
i=1

xipi + z,−1 ≤ xi ≤ 1

}
.

One can see from the above equation that a zonotope can also be represented

as a shifted Minkowski sum of finitely many line segments.

Zonotopes have many interesting properties. For example, a zonotope is

centrally symmetric and every face of a zonotope is again a zonotope. Please

refer to Appendix A.2 for a description of the permutahedron of order 4 which

is a 3 dimensional zonotope.

There is a correspondence between zonotopes and linear arrangements,

which is exploited in the cell enumeration algorithm described in Section 6.2.

The correspondence is as follow:

Proposition 1.4.2 Given a set of line segments and the zonotope that is formed

by the Minkowski sum of the line segments, the normal fan of the zonotope is

the fan of the linear arrangement of the hyperplanes whose normal vectors are

associated with the line segments.

The proof of Proposition 1.4.2 is omitted, see Chapter 7 of [38].

1.5 Matroids and oriented matroids

Oriented matroids are a powerful abstract structure that can describe the com-

binatorial structure of hyperplane arrangements, as well as other discrete ob-

jects, including directed graphs, vector configuration, point configuration.

6
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1.5.1 Matroids

We first give a brief introduction to matroids. A thorough introduction into

this field can be found in [29]. The theory of matroids arises from the study of

dependency in linear algebra and graphs, and many terms are borrowed from

there.

Definition 1.5.1 (first definition) A matroid M is an ordered pair (E, I)

where E is a finite set and I is a collection of subset of E satisfying the following

three conditions:

(I1) φ ∈ I.

(I2) If X ∈ I and Y ⊂ X, then Y ∈ I.

(I3) If X,Y ∈ I and |Y | < |X|, then there exists an element e ∈ X \ Y such

that Y ∪ {e} ∈ I.

The collection I is called independent sets and the three conditions are

referred to as independent sets axioms. The Axiom (I3) is called independence

augmentation axiom.

A matroid can also be defined in terms of minimal dependent sets, or

circuits .

Definition 1.5.2 (second definition) A matroidM is an ordered pair (E, C)

where E is a finite set and C is a collection of subsets of E satisfying the fol-

lowing three conditions:

(C1) φ 6∈ C.

7
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(C2) If X ∈ C and Y ⊂ X, then Y 6∈ C.

(C3) If X,Y ∈ C and e ∈ X ∩ Y , then there exists a Z ∈ C such that Z ⊆
{X ∪ Y } − {e}.

The 3 conditions above are referred to as circuit axioms .

In a matroid, the circuits (minimal dependent sets) are uniquely deter-

mined by the independent sets and vice versa. So the two definitions of matroid

are equivalent.

1.5.2 Oriented matroids

Oriented matroids extend the concept of matroids by associating each element

in the dependent set with a sign indicating its orientation, which is very useful

in describing the relative positions of discrete geometric objects such as points,

vectors and arrangements.

The following definition of oriented matroids is the extension of the second

definition of matroids, which is in terms of circuits (minimal dependent sets).

Definition 1.5.3 An Oriented matroid is denoted by M = (E, C), where

E is a set of elements, each of which could be associated with a sign

in {+,−}. A signed subset X of E shows how the elements in the subset is

associated with the signs (an element that is not in the subset can be regarded

as being associated with 0, i.e., without any sign.) We use X+ to denote the

elements in X associated with positive sign and X− the elements associated

with negative sign.

C is a set of circuits , i.e., a collection of signed subsets of E satisfying

the following 4 properties (circuit axioms).

8
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(C1) Empty set is not a circuit (φ 6∈ C).

(C2) The negative of circuit is a circuit (X ∈ C ⇒ −X ∈ C).

(C3) No proper subset of a circuit is a circuit (X ∈ C, Y ⊂ X ⇒ Y 6∈ C).

(C4) If X, Y ∈ C with X 6= Y and e ∈ X+ ∩ Y −, then there is a third circuit

Z ∈ C satisfying Z+ ⊆ (X+ ∪ Y +)\{e} and Z− ⊆ (X− ∪ Y −)\{e}.

For some e ∈ E and X ∈ C, we use Xe to denote the sign of e in X. Xe

is also called sign signature.

The vectors of an oriented matroid (not of a vector space) are composed

repeatedly from the circuits in the following way.

(X ◦ Y )e =

{
Xe ifXe 6= 0,
Ye otherwise.

A straight-forward example of oriented matroids comes from the linear

dependencies of a vector configuration V = {v1, v2, · · · , vn} ⊆ IRd. Without

ambiguity, let V ∈ IR d×n also be the matrix of the n vectors. Then the space

of linear dependencies is

Dep(V ) := {u ∈ IRn | V u = 0}. (1.5.2)

The vectors in the corresponding oriented matroid are the signed vectors

in Dep(V ) and the circuits are the signed vectors of the minimal dependencies

in Dep(V ).

Example 1 For the following vector configuration (see Figure 1.1)

V =

{(
1
0

)
,

(
1
1

)
,

(
0
1

)
,

( −1
1

)}
,

9
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the circuits are








+
−
+
0


 ,




+
−
0
+


 ,




+
0
−
+


 ,




0
+
−
+








and the negations of

them. The vectors (of the oriented matroid) consist of




0
0
0
0


, the circuits and

the compositions of the circuits, i.e., dependencies that are not minimal. The

non-minimal dependencies are








+
+
−
+


 ,




+
−
+
+


 ,




+
−
+
−


 ,




+
−
−
+








and their

negations.

1

234

Figure 1.1: A vector configuration of 4 vectors

A linear arrangement corresponds naturally to an oriented matroid, as a

linear arrangement is uniquely determined by the norm vectors of its hyper-

planes, and the norm vectors form a vector configuration.

For more examples of combinatorial objects that fit into the model of

oriented matroids, please refer to Appendix A.1. For a complete introduction

to the rich theory of oriented matroids, please refer to [7].

1.5.3 Chirotopes

For a vector configuration {v1,v2, . . . ,vn} in IRr, the chirotope, or basis orien-

tation, is defined by the signs of the determinants of the ordered r-subset of the

10
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vectors, i.e., χ : Λ(n, r) → {+,−, 0} and χ(i1, . . . , ir) := sign det(vi1 , . . . ,vir) ∈
{+,−, 0}.

Example 2 For a vector configuration {v1, . . . ,vn} in IR2,

χ(i, j) = sign det[vi,vj]

= sign det

( ‖vi‖ cos θi ‖vj‖ cos θj

‖vi‖ sin θi ‖vj‖ sin θj

)

= sign ‖vi‖ ‖vj‖ sin(θj − θi).

So, χ(i, j) = 0 if vi and vj are colinear; χ(i, j) = + if the angle distance from

vi to vj is less than π, or vi can be rotated counter-clockwise to the position of

vj by an angle less than π; χ(i, j) = + if the angle distance from vi to vj is

bigger than π.

The circuits of an oriented matroid determine an associated chirotope

(unique up to a reversal of all the signs), and conversely, the circuits can be

reconstructed from the chirotope.

An oriented matroid is uniform if its chirotope has no 0 in it. In the case

of a vector configuration in IRr, uniformness means that any r vectors in the

configuration are linearly independent, i.e., there is no degeneracy.

We have the 3-term Grassmann-Plücker identity :

det[v1,v2, · · · ,vr−2,w1,w2] · det[v1,v2, · · · ,vr−2,w3,w4]−
det[v1,v2, · · · ,vr−2,w1,w3] · det[v1,v2, · · · ,vr−2,w2,w4]+
det[v1,v2, · · · ,vr−2,w1,w4] · det[v1,v2, · · · ,vr−2,w2,w3] = 0

(1.5.3)

for all v1,v2, · · · ,vr−2,w1,w2,w3,w4 ∈ IRr.

A chirotope is a representation of oriented matroids that is convenient for

computational purposes due to its link to linear algebra. To reduce the number

11
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of signs involved in computations, minimal reduced system of a chirotope χ :

Λ(n, r) → {+,−, 0} is introduced; it is defined as the minimal subset S of

signs that completely determines χ, i.e., χ|S=χ′|S together with the 3-term

Grassmann-Plücker identity imply χ = χ′.

1.5.4 Realizable oriented matroids

There is a gap between the model of oriented matroids and geometric objects:

although every vector configuration corresponds to an oriented matroid, not

every oriented matroid corresponds to a vector configuration. The ones that do

correspond are called realizable. Note that a couple of similar terms are used,

including stretchable and coordinatizable. The formal definition follows.

Definition 1.5.4 A realization of oriented matroid M of rank r on E is a

mapping φ : E → IRr such that

χ(e1, e2, · · · , er) = sign det(φ(e1), φ(e2), · · · , φ(er)) (1.5.4)

for all e1, e2, · · · , er ∈ E.

The realization problem, namely to determine whether a given oriented

matroid is realizable, is known to be NP-hard [35]. One way to solve the

problem is the so called method of solvability sequences; please refer to [6].

Remark 1.5.5 It is known that an oriented matroid M of rank r on E is

realizable if r ≤ 2, or r = 3 and |E| ≤ 8.

1.6 Graphs

Polytopes and arrangements are related to graphs as the vertices and edges of

a polytope or an arrangement correspond to the vertices and edges of a graph.

12
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A graph is d-polytopal if it is the graph of some d-polytope. A skeleton in an

arrangement is a connected subset of vertices and edges of the arrangement.

In this thesis, we are particularly interested in the envelope skeleton, whose

vertices and edges are external, i.e., belong to the envelope of the arrangement.

For a concise introduction to graph theory, please refer to [5]. We recall

some results used in this thesis.

A simple graph is an unweighted, undirected graph containing no graph

loops or multiple edges. A graph is planar if it can be drawn in the plane so

that its edges intersect only at their ends. A graph is said to be k-connected if

there does not exist a set of k−1 vertices whose removal disconnects the graph.

Theorem 1.6.1 (Euler’s formula) Let f0, f1, f2 be the number of vertices,

edges and faces of a planar graph respectively, then

f0 − f1 + f2 = 2.

Theorem 1.6.2 (Steinitz’ theorem) A graph is 3-polytopal if and only if it

is simple, planar, and 3-connected.

13



Chapter 2

Introduction

2.1 Conjectured bound for the average diam-

eter

Let δ(A) denote the average diameter of a bounded cell Pi of A; that is,

δ(A) =

∑f+
d (A)

i=1 δ(Pi)

f+
d (A)

.

where f+
d (A) is the number of bounded cells of A and δ(Pi) denotes the diam-

eter of Pi , i.e., the smallest number such that any two vertices of Pi can be

connected by a path with at most δ(Pi) edges. Let ∆A(d, n) denote the largest

possible average diameter of a bounded cell of a simple arrangement defined by

n inequalities in dimension d.

The main focus of this thesis is the following conjecture proposed in Deza,

Terlaky and Zinchenko [12].

Conjecture 2.1.1 The average diameter of a simple arrangement is bounded

by its dimension from above, i.e., ∆A(d, n) ≤ d.

A simple line arrangement with average diameter equal to 2 − 2
n−1

was

given in [12]. We propose, in Chapter 3, a line arrangement with average

14
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diameter 2− 2dn
2
e

(n−1)(n−2)
and show that this diameter is maximal, i.e., ∆A(2, n) =

2 − 2dn
2
e

(n−1)(n−2)
. In Chapter 4, a plane arrangement with average diameter 3 −

6
n−1

+
6(bn

2
c−2)

(n−1)(n−2)(n−3)
is proposed, yielding ∆A(3, n) ≥ 3− 6

n−1
+

6(bn
2
c−2)

(n−1)(n−2)(n−3)
.

In Section 5, the constructions in lower dimensions are generalized to general

dimensions and we propose an hyperplane arrangement with
(

n−d
d

)
cubical cells

for n ≥ 2d. It implies that the dimension d is an asymptotic lower bound for

∆A(d, n) for fixed d.

2.2 Hirsch Conjecture

Hirsch Conjecture was formulated in 1957 and reported in [10]. It states that

the diameter of a polytope defined by n inequalities in dimension d is not greater

than n− d.

Remark 2.2.1 The conjecture does not hold for unbounded polyhedra [24].

Deza, Terlaky and Zinchenko [12] noted the following link between the

Hirsch conjecture and Conjecture 2.1.1.

Proposition 2.2.2 If the conjecture of Hirsch holds for polytopes in dimension

d, then ∆A(d, n) ≤ d + 2d
n−1

.

Proof. Let {Pi | i = 1, 2, · · · , f+
d (A d,n) =

(
n−1

d

)} denote the set of bounded

15
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cells and fd−1(Pi) the number of facets of Pi. Then,

δ(A d,n) =
1

f+
d (A d,n)

f+
d (A d,n)∑

i=1

δ(Pi)

≤ 1

f+
d (A d,n)

f+
d (A d,n)∑

i=1

(fd−1(Pi)− d) (Hirsch conjecture)

=
1

f+
d (A d,n)

f+
d (A d,n)∑

i=1

fd−1(Pi)− d.

As a facet belongs to at most 2 bounded cells,
∑f+

d (A d,n)

i=1 fd−1(Pi) is at most

twice the number of bounded facets in A d,n. Thus,

δ(A d,n) ≤ 2
(
f+

d−1(A d,n) + f 0
d−1(A d,n)

)

f+
d (A d,n)

− d

=
2n

(
n−2
d−1

)
(

n−1
d

) − d (Theorem 1.2.5, Lemma 1.2.6)

= d +
2d

n− 1
.

¤

The Hirsch conjecture holds for d ≤ 3 [23] and 0/1 polytopes [26]. Par-

ticularly, we have the following propositions:

Proposition 2.2.3 Let P be a 2-polytope with n (non-redundant) facets. Then

δ(P ) =
⌊n

2

⌋
.

Proposition 2.2.4 Let P be a 3-polytope with n facets. Then

δ(P ) ≤
⌊

2n

3

⌋
− 1.

Proposition 2.2.3 is trivial and Proposition 2.2.4 is given in [21] (Chapter

16).

16
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2.3 Conjectured bound for the envelope com-

plexity

In the proof of Proposition 2.2.2, we noticed that

f+
d (A d,n)∑

i=1

fd−1(Pi) ≤ 2
(
f+

d−1(A d,n) + f 0
d−1(A d,n)

)
.

Precisely, as an external facet belongs to exactly one bounded facet, we have

f+
d (A d,n)∑

i=1

fd−1(Pi) = 2
(
f+

d−1(A d,n) + f 0
d−1(A d,n)

)− f 0
d−1(A d,n). (2.3.1)

Therefore, a lower bound for f 0
d−1(A d,n) would yield a tighter upper bound

for ∆A(d, n). Let Φ0
A(d, n) be the minimum number of external facets for any

simple arrangement defined by n hyperplanes in dimension d.

Conjecture 2.3.1 Any arrangement A d,n has at least d
(

n−1
d−1

)
external facets,

i.e., Φ0
A(d, n) ≥ d

(
n−1
d−1

)
.

We show that Φ0
A(2, n) = 2(n − 1) for n ≥ 4 in Chapter 3, and that

Φ0
A(3, n) ≥ n(n−2)

3
+ 2 for n ≥ 5 in Chapter 4.

2.4 Haimovich bound for the expected number

of pivot

While the complexity analysis on simplex methods is concerned with the num-

ber of pivot steps needed to reach the optimum, the bounds of the average

diameter of arrangements could also provide some insights into the average com-

plexity of simplex methods. Haimovich’s probabilistic analysis on the shadow-

vertex algorithm shows that the expected number of pivot steps needed in

17
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Phase II is bounded by d, the dimension, which is also the bound on the aver-

age diameter in Conjecture 2.1.1, see Section 0.7 of [3] for more details.

While Haimovich’s results and Conjecture 2.1.1 have a similar flavor, they

differ in some aspects: Haimovich considers unbounded cells in addition to the

bounded ones, and the number of pivots could be smaller than the diameter

for some cells.

2.5 Dedieu-Malajovich-Shub bound for the av-

erage curvature

Intuitively, the curvature is a measure of how far a geometric object deviates

from being flat. In particular, we are interested in the curvature of the central

path of a polytope defined by n inequalities in dimension d. For a compact

introduction to the theory of interior point methods, as well as the concept of

central path, please refer to [32, 33]. A detailed description of the curvature

of curves can be found in Chapter 17 of [8].

Let C be a curve of length L in IRd and ψarc : [0, L] → IRd its parametriza-

tion by the curve length. Then the curvature at the point t is κ(t) = ψ̈arc(t)

and the total curvature is defined as
∫ L

0
‖κ(t)‖dt.

Proposition 2.5.1 The average total curvature of a bounded cell of a simple

arrangement determined by n inequalities in dimension d is not greater than

2πd [11].

Conjecture 2.1.1 is clearly a discrete version of Proposition 2.5.1.

18



Chapter 3

Line Arrangements with
Maximal Average Diameter

3.1 Line arrangements with large average di-

ameter

For n ≥ 4, we consider the simple line arrangement Ao
2,n made of the 2 lines

h1 and h2 forming, respectively, the x1 and x2 axis, and (n − 2) lines defined

by their intersections with h1 and h2. We have hk ∩ h1 = {1 + (k− 3)ε, 0} and

hk ∩ h2 = {0, 1 − (k − 3)ε} for k = 3, 4, . . . , n − 1, and hn ∩ h1 = {2, 0} and

hn∩h1 = {0, 2+ε} where ε is a constant satisfying 0 < ε < 1
n−3

. See Figure 3.1

for an arrangement combinatorially equivalent to Ao
2,7.

Proposition 3.1.1 For n ≥ 4, the bounded cells of the arrangement Ao
2,n

consist of (n− 2) triangles, (n−1)(n−4)
2

4-gons, and one n-gon.

Proof. The first (n− 1) lines of Ao
2,n clearly form a simple line arrangement

which bounded cells are (n − 3) triangles and
(

n−3
2

)
4-gons. The last line hn

adds one n-gons, one triangle and (n− 4) 4-gons. ¤
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h1

h2

Figure 3.1: An arrangement combinatorially equivalent to Ao
2,7.
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Corollary 3.1.2 We have δ(Ao
2,n) = 2− 2dn

2
e

(n−1)(n−2)
for n ≥ 4.

Proof. Since the diameter of a k-gons is bk
2
c, we have δ(Ao

2,n) = 2 −
2

(n−2)−(bn
2
c−2)

(n−1)(n−2)
= 2− 2dn

2
e

(n−1)(n−2)
. ¤

The first (n− 1) lines of Ao
2,n form the line arrangement A∗

2,n−1 proposed

in [12]. The arrangement A∗
2,n has 3(n−2) external facets and average diameter

δ(A∗
2,n) = 2 − 2

n−1
. The arrangement Ao

2,n has 2(n − 1) external facets and

minimizes the number of external facets, see Theorem 3.2.1. Note that the

envelope of the bounded cells of Ao
2,n has one reflex vertex. In Section 3.2

we show that the arrangement Ao
2,n is the best possible; that is, ∆A(2, n) =

δ(Ao
2,n) = 2 − 2dn

2
e

(n−1)(n−2)
for n ≥ 4. In Section 4, following the same approach,

we generalize A∗
2,n−1 to dimension 3 and add one plane to reduce the number

of external facets.

3.2 Exact value of the maximum average di-

ameter in the plane

Clearly the number of external facets f 0
1 (A 2,n) is the same as the number

of external vertices f 0
0 (A 2,n). The external vertices can be divided into three

types, namely V2, V3 and V4, being incident to, respectively, 2, 3, and 4 bounded

edge. We use v2, v3 and v4 to denote, respectively, the number of vertices of

type V2, V3 and V4. The number of external facets f 0
1 (A 2,n) = v2 + v3 + v4 and

we have the following property [4].

Proposition 3.2.1 Any simple line arrangement has at least 2(n−1) external

facets. Moreover, Φ0
A(2, n) = 2(n− 1).
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Proof. Let us count the number of external vertices. Give each external

vertex a weight of 1, then distribute the weight to the 2 lines intersecting at the

vertex. Figure 3.2 shows how the weights are distributed for different types of

external vertices. Now let us count the weights line-wise. For each line of the

arrangement, there are two vertices from which the line is entering or leaving

the envelope; we call them end points. Since V4 cannot be an end point of

a line, the possible combinations of the two end points are (V2, V2), (V2, V3)

and (V3, V3) and the weights of the corresponding lines are at least 1, 2 and 2

respectively. The weight lower bound of the line L23 with ends (V2, V3) is not

as straightforward as the other two. The ends (V2, V3) gives L23 a weight of

1
2

+ 1 = 3
2
. A further look reveals that there has to be a V4 along L23, which

gives L23 an extra weight of 1
2
. Therefore, the weight of L23 is at least 2. The

lines L22’s with ends (V2, V2) are the only ones with a weight that is less than

2. However, there can only be at most 2 of them, otherwise, any 3 such lines

would force the envelope to be a triangle (2D simplex), which is impossible

because it is known that the envelope of A 2,n can not be convex [15]. So the

total weight, or the number of external vertices, counted is at least 2n− 2. In

A 2,n the number of external facets is equal to the number of external vertices.

Therefore Φ0
A(2, n) ≥ 2n − 2 and since f 0

1 (Ao
2,n) = 2(n − 1) (see Figure 3.1),

we have Φ0
A(2, n) = 2(n− 1). ¤

Theorem 3.2.2 The arrangement Ao
2,n maximize the average diameter, i.e.,

∆A(2, n) = 2− 2dn
2
e

(n−1)(n−2)
for n ≥ 3.
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Figure 3.2: Weight distribution rules (the shaded area is inside the envelope).

Proof. Since

δ(A 2,n) =
1

f+
2 (A 2,n)

f+
2 (A 2,n)∑

i=1

δ(Pi)

=
1

f+
2 (A 2,n)

f+
2 (A 2,n)∑

i=1

⌊
f1(Pi)

2

⌋
(Proposition 2.2.3)

=
1

f+
2 (A 2,n)

∑f+
2 (A 2,n)

i=1 f1(Pi)− podd(A 2,n)

2

=
1

f+
2 (A 2,n)

2n(n− 2)− f 0
1 (A 2,n)− podd(A 2,n)

2
(by 2.3.1)

where podd(A 2,n) is the number of odd-gons in A 2,n. To maximize δ(A 2,n) is

therefore equivalent to minimize f 0
1 (A 2,n) + podd(A 2,n). By Theorem 3.2.1 and

Lemma 1.2.9, we have f 0
1 (A 2,n) ≥ 2n − 2 and podd(A 2,n) ≥ n − 2. Since both

are satisfied with equality for Ao
2,n for even n, we have ∆A(2, n) = δ(Ao

2,n) for

even n. For odd n, A 2,n has n − 1 odd gons and the only way to improve

δ(Ao
2,n) would by having one less odd gon, which is impossible as otherwise all

the odd gons are the n − 2 triangles and hence
∑f+

2 (A 2,n)
i=1 f1(Pi) is odd, while

∑f+
2 (A 2,n)

i=1 f1(Pi) = f1(A 2,n) − f 0
1 (A 2,n) = 2n(n − 2) − 2(n − 1) indicates that

∑f+
2 (A 2,n)

i=1 f1(Pi) is even. ¤

Corollary 3.2.3 Conjecture 2.1.1 holds for line arrangements.
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3.3 Line arrangements with fewer than 8 lines

There is only one combinatorial type of simple line arrangement for n = 4.

For n = 5, there are 6 combinatorial types of simple line arrangement; see

Figure 3.3.

Ao A*

Figure 3.3: Enumeration of A 2,5.

See Figure 3.4 for the visual enumeration 1 of all the 43 combinatorial

types of simple arrangements formed by 6 lines. The arrangement A0
2,6 has the

maximal average diameter 2. For detailed computational results, please refer

to Appendix C.1.

We analyzed 886 out of 922 combinatorial types for A2,7. The computa-

tional results are given in Appendix C.2.

1The visualization is realized using Maple 10.
2A0

2,6 is in the 6th row and 6th column of Figure 3.4.
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Figure 3.4: Enumeration of A 2,6.
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Chapter 4

Plane Arrangements with Large
Average Diameter

4.1 Plane arrangements with large average di-

ameter

For n ≥ 5, we consider the simple plane arrangement Ao
3,n made of the 3 plane

h1, h2 and h3 corresponding, respectively, to x3 = 0, x2 = 0 and x1 = 0, and

(n − 3) planes defined by their intersections with the x1, x2 and x3 axis. We

have hk ∩ h1 ∩ h2 = {1 + 2(k− 4)ε, 0, 0}, hk ∩ h1 ∩ h3 = {0, 1 + (k− 4)ε, 0} and

hk∩h2∩h3 = {0, 0, 1−(k−4)ε} for k = 4, 5, . . . , n−1, and hn∩h1∩h2 = {3, 0, 0},
hn ∩ h1 ∩ h3 = {0, 2, 0} and hn ∩ h2 ∩ h3 = {0, 0, 3 + ε} where ε is a constant

satisfying 0 < ε < 1
n−4

. See Figure 4.1 for an illustration of an arrangement

combinatorially equivalent to Ao
3,7 where, for clarity, only the bounded cells

belonging to the positive orthant are drawn.

Proposition 4.1.1 For n ≥ 5, the bounded cells of the arrangement Ao
3,n

consist of (n− 3) tetrahedra, (n− 3)(n− 4)− 1 cells combinatorially equivalent

to a prism with a triangular base,
(

n−3
3

)
cells combinatorially equivalent to a
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h1h2

h3

Figure 4.1: An arrangement combinatorially equivalent to Ao
3,7.

Figure 4.2: A polytope combinatorially equivalent to the shell S7.
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cube, and one cell combinatorially equivalent to a shell Sn with n facets and

2(n− 2) vertices. See Figure 4.2 for an illustration of S7.

Proof. For 4 ≤ k ≤ n − 1, let A∗
3,k denote the arrangement formed by

the first k planes of Ao
3,n. See Figure 4.3 for an arrangement combinatorially

equivalent to A∗
3,6. We first show by induction that the bounded cells of the

arrangement A∗
3,n−1 consist of (n− 4) tetrahedra, (n− 4)(n− 5) combinatorial

triangular prisms and
(

n−4
3

)
combinatorial cubes. We use the following notation

to describe the bounded cells of A∗
3,k−1: T4 for a tetrahedron with a facet on

h1 ; P4, respectively P¦, for a combinatorial triangular prism with a triangular,

respectively square, facet on h1; C¦ for a combinatorial cube with a square facet

on h1; and C, respectively T and P , for a combinatorial cube, respectively

tetrahedron and triangular prism, not touching h1. When the plane hk is

added, the cells T4, P4, P¦, and C¦ are sliced, respectively, into T and P4,

P and P4, P and C¦, and C and C¦. In addition, one T4 cell and (k − 4)

P¦ cells are created by bounding (k − 3) unbounded cells of A∗
3,k−1. Let c(k)

denotes the number of C cells of A∗
3,k, similarly for C¦, T , T4, P , P4 and

P¦. For A∗
3,4 we have t4(4) = 1 and t(4) = p(4) = p4(4) = p¦(4) = c(4) =

c(4) = 0. The addition of hk removes and adds one T4, thus, t4(k) = 1.

Similarly, all P¦ are removed and (k − 4) are added, thus, p¦(k) = (k − 4).

Since t(k) = t(k − 1) + t4(k − 1) and p4(k) = p4(k − 1) + t4(k − 1), we

have t(k) = p4(k) = (k − 4). Since p(k) = p(k − 1) + p4(k − 1) + p¦(k − 1),

we have p(k) = (k − 4)(k − 5). Since c¦(k) = c¦(k − 1) + p¦(k − 1), we have

c¦(k) =
(

k−4
2

)
. Since c(k) = c(k−1)+c¦(k−1), we have c(k) =

(
k−4
3

)
. Therefore

the bounded cells of A∗
3,n−1 consist of t(n−1)+ t4(n−1) = (n−4) tetrahedra,

p(n − 1) + p4(n − 1) + p¦(n − 1) = (n − 4)(n − 5) combinatorial triangular
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prisms, and c(n− 1) + c¦(n− 1) =
(

n−4
3

)
combinatorial cubes. The addition of

hn to A∗
3,n−1 creates 1 shell Sn with 2 triangular facets belonging to h2 and h3

and 1 square facet belonging to h1. Besides Sn, all the bounded cells created

by the addition of hn are below h1. One P¦ and n− 5 combinatorial cubes are

created between h2 and h3. The other bounded cells are on the negative side

of h3: n − 5 P¦ and 1 T4 between hn and hn−1, and n − k − 5 C¦ and 1 P4

between hn−k and hn−k−1 for k = 1, . . . , n− 5. In total, we have 1 tetrahedron,
(

n−4
2

)
combinatorial cubes and (2n− 9) combinatorial triangular prisms below

h1. ¤

Corollary 4.1.2 We have δ(Ao
3,n) = 3− 6

n−1
+

6(bn
2
c−2)

(n−1)(n−2)(n−3)
for n ≥ 5.

Proof. Since the diameter of a tetrahedron, triangular prism, cube and

n-shell is, respectively, 1, 2, 3 and bn
2
c, we have

δ(Ao
3,n) = 3− 6

2(n− 3) + (n− 3)(n− 4)− 1− (bn
2
c − 3)

(n− 1)(n− 2)(n− 3)

= 3− 6

n− 1
+

6(bn
2
c − 2)

(n− 1)(n− 2)(n− 3)
.

¤

4.2 Improved upper bound for plane arrange-

ments

The dimension 3 case is slightly more complicated than the plane case. As the

union of all of the bounded cells is a piecewise linear ball, see [13], the envelope

is planar for plane arrangements. By Theorem 1.6.1 (Euler’s formula), we have

f 0
0 (A 3,n)− f 0

1 (A 3,n) + f 0
2 (A 3,n) = 2. (4.2.1)
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h1

h2

h3

Figure 4.3: An arrangement combinatorially equivalent to A∗
3,6.
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2f 0
1 (A 3,n) ≥ 3f 0

0 (A 3,n). (4.2.2)

The external vertices of A 3,n ∩ hi are external vertices of A 3,n for i =

1, 2, . . . , n. A 3,n ∩ hi has at least 2(n− 2) external facets (Theorem 1.2.6), i.e.,

at least 2(n − 2) external vertices. Since a vertex belongs to 3 planes, it is

counted three times and, therefore, A 3,n has at least 2n(n−2)
3

external vertices;

that is:

f 0
0 (A 3,n) ≥ 2n(n− 2)

3
. (4.2.3)

Lemma 4.2.1 Any simple plane arrangement has at least n(n−2)
3

+ 2 external

facets, i.e., Φ0
A(3, n) ≥ n(n−2)

3
+ 2.

Proof.

f 0
2 (A 3,n) = f 0

1 (A 3,n)− f 0
0 (A 3,n) + 2 (by 4.2.1)

≥ f 0
0 (A 3,n)

2
+ 2 (by 4.2.2)

≥ n(n− 2)

3
+ 2. (by 4.2.3)

¤

Using Lemma 4.2.1 and the fact that the Hirsch conjecture holds for d = 3,

we get the following upper bound for the average diameter.

Proposition 4.2.2 We have ∆A(3, n) ≤ 3 + 4(2n2−16n+21)
3(n−1)(n−2)(n−3)

.
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Proof. We have:

δ(A) =
1

f+
3 (A 3,n)

f+
3 (A 3,n)∑

i=1

δ(Pi)

≤ 1

f+
3 (A 3,n)

f+
3 (A 3,n)∑

i=1

(⌊
2

3
f2(Pi)

⌋
− 1

)
(Proposition 2.2.4)

=
1

f+
3 (A 3,n)

f+
3 (A 3,n)∑

i=1

⌊
2

3
f2(Pi)

⌋
− 1

≤ 1

f+
3 (A 3,n)

·



f+
3 (A 3,n)∑

i=1

2

3
f2(Pi)− 2

3
(n− 3)


− 1 (Corollary 1.2.9)

=
1

f+
3 (A 3,n)

· 2

3




f+
3 (A 3,n)∑

i=1

f2(Pi)− (n− 3)


− 1

≤ 1

f+
3 (A 3,n)

· 2

3

(
2n

(
n− 2

2

)
−

(
n(n− 2)

3
+ 2

)
− (n− 3)

)
− 1

(Lemma 1.2.6, 4.2.1)

= 3 +
4(2n2 − 16n + 21)

3(n− 1)(n− 2)(n− 3)
.

¤

4.3 Plane arrangements with fewer than 7 planes

As there is only one combinatorial type of simple plane arrangement for n = 5,

we have ∆A(3, 5) = δ(Ao
3,5) = 3

2
.

While the diameter of Ao
3,n is arbitrarily close to 3 as n goes to infinity,

we do not believe it has the maximal average diameter. Among the 43 simple

combinatorial types of arrangements formed by 6 planes, the maximum average

diameter is 2 while the δ(Ao
3,6) = 1.8. One of the 2 simple arrangements with
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Figure 4.4: An arrangement maximizing the average diameter for (d, n) =
(3, 6).

maximum diameter is shown in Figure 4.41. It has 3 simplices, 4 simplex prisms,

and 3 6-shells. For detailed computational results, see Appendix C.3.

1The visualization is realized using Maple 10.
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Chapter 5

Hyperplane Arrangements with
Large Average Diameter

In Section 5.2, the arrangementsA∗
2,n andA∗

3,n are generalized to an hyperplane

arrangement A∗
d,n which contains

(
n−d

d

)
cubical cells for n ≥ 2d. It implies that

the average diameter δ(A∗
d,n) is arbitrarily close to d for n large enough. Thus,

the dimension d is an asymptotic lower bound for ∆A(d, n) for fixed d. Before

presenting in Section 5.2 the arrangement A∗
d,n, we recall in Section 5.1 the

combinatorial structure of a simple arrangement formed by d + 2 hyperplanes

in dimension d.

5.1 Simple arrangement with d+2 hyperplanes

We consider a d-dimensional simple arrangement Ad,d+2 formed by d+2 hyper-

planes. We present two proofs of the uniqueness of the combinatorial type of

Ad,d+2; one more geometrical and one using Gale transform. The combinatorial

structure of Ad,d+2 is also given.
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Figure 5.1: An arrangement combinatorially equivalent to A 3,5.

5.1.1 Uniqueness of Ad,d+2 – geometrical approach

Proposition 5.1.1 Let P a simple d-dimensional polytope with d + 2 facets.

If P has a simplex facet, then P is combinatorially equivalent to a prism with

a simplex basis.

Proof. Suppose that polytope P is formed by the set of hyperplanes

H = {h0, h1, . . . , hd+1} and the known simplex facet is on h0. Let the d vertices

of the simple facet be v1, v2, . . . , vd and vi(1 6 i 6 d) is the intersection of

H \ {hi, hd+1}. Since P is simple, each vi is adjacent to exactly one other

vertex v′i that is not on h0. because the sets of hyperplanes that determine

the adjacent vertices vi and v′i differ by only one hyperplane, v′i can only be

the intersection of H \ {h0, hi} or H \ {h0, hd+1}. Note that v′i can not be the

intersection of H \ {h0, hd+1}, otherwise H \ {hd+1} forms a simplex, which

is impossible. Therefore, v′i is the intersection of H \ {h0, hi}, hence v′i is on

hd+1 for all i. v1, . . . , vd, v
′
1, . . . , v

′
d are all the vertices of P and v1, . . . , vd ∈
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h0, v
′
1, . . . , v

′
d ∈ hd+1. So P is combinatorially equivalent to a prism with a

simplex basis. ¤

Let us call a polytope combinatorially equivalent to a prism with a simplex

basis a simplex prism, and similarly for cubes. As showed later, the majority

of the bounded cells in Ad,d+2 has d+2 facets. The above proposition provides

a tool to identify a simplex prism cell.

Proposition 5.1.2 Ad,d+2 is combinatorially unique.

Proof. We prove it by induction on d. It is true for d = 2, and suppose that

Ad′,d′+2 is combinatorially unique for d′ < d. Let Ad,d+2 be formed by hyper-

planes h1, h2, . . . , hd+2. By Corollary 1.2.9, it has a simplex cell. Without losing

generality, we assume that the simplex cell is tightly bounded by h1, . . . , hd+1.

hd+2 will not pass through the simplex cell, thus gives rise to a simplex prism.

Let the two basis of the prism be on hd+1 and hd+2, which intersect at a (d−2)-

face F . All the bounded cells of Ad,d+2 are between hd+1 and hd+2 except the

simplex cell (see Figure 5.2 for an example in 3D). The projection of Ad,d+2 on

hd+2 is Ad−1,d+1. The bounded cells between hd+1 and hd+2 can be viewed as

formed by raising Ad−1,d+1 about axis F . By induction hypothesis Ad−1,d+1 is

combinatorially unique. So Ad,d+2 is also combinatorially unique. ¤

5.1.2 Uniqueness of Ad,d+2 – Gale transform approach

A point configuration P of n points {x1,x2, · · · ,xn} in IRd corresponds to a

vector configuration V of n vectors

{[
x1

1

]
,

[
x2

1

]
, · · · ,

[
xn

1

]}
in IRd+1.

They can be mapped to a vector configuration V ∗ of n vectors in IRn−d−1

through Gale transform, and further more, to a signed point configuration P ∗

36



M.Sc. Thesis - Feng Xie McMaster-Computing and Software

Figure 5.2: Getting A 3,5 by dimension lifting - the bounded cells between the
green and red plane are lifted from A 2,4 about the blue line.

in IRn−d−2 through affine Gale transform. Gale transform preserves combina-

torial properties, i.e., P , V , V ∗ and P ∗ all have the same oriented matroid1,

making it useful for studying point/vector configurations having only few more

points/vectors than the dimension as it drastically decreases the dimension of

the geometric object studied. An introduction to the theoretical background

and implementing issues of Gale transform can be found in [38](Chapter 6)

and [1], respectively.

A proof of Proposition 5.1.2 using Gale transform follows.

Proof. A d,d+2 corresponds to a linear arrangement in IRd+1 through the

technique of dimension lifting (see Figure 5.3). An extra linear hyperplane

hd+3 is needed to record the direction of dimension lifting. Without losing

generality, let hd+3 be xd+1 = 1, whose normal vector is ed+3. The norms of the

1The oriented matroids associated to P (or V ) and V ∗ (or P ∗) are dual to each other
(oriented matroid duality is not formally introduced in this thesis, see [7].
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hyperplanes of the linear arrangement give rise to a vector configuration V of d+

3 vectors {v1,v2, · · · ,vd+2, ed+3}. Through Gale transform, V can be mapped

to a vector configuration V ∗ of d+3 vectors in IR2, and furthermore, to a point

configuration P ∗ of d+3 distinct signed points {x1,x2, · · · ,xd+2,xd+3} in IR (a

line). Notice that xd+3 is fixed for all arrangements. Since the arrangement is

simple, any point in P ∗ is either black(positive) or white(negative). For a point

configuration like that, only through relabeling and/or recoloring (of the points

other than xd+3) can we get different oriented matroids. However they are all

associated with the same arrangement combinatorially, because the relabeling

of the points corresponds to the relabeling of the hyperplanes in A d,d+2; and

the recoloring of the points corresponds to the reorientation of the hyperplanes,

i.e., switching the positive and negative sides of the hyperplanes, which does

not affect the combinatorial structure of the arrangement. Therefore, Ad,d+2 is

combinatorially unique. ¤

Figure 5.3: Lifting an arrangement from dimension 2 to dimension 3.
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5.1.3 Combinatorial structure of Ad,d+2

Theorem 1.2.5 gives that Ad,d+2 has
(

d+1
d

)
= d+1 bounded cells. Obviously, all

the bounded cells have either d+1 or d+2 facets. The dimension lifting process

discussed above actually gives an algorithm for enumerating all the bounded

cells in Ad,d+2. We have:

Proposition 5.1.3 There are exactly 2 simplex cells in Ad,d+2 for d > 2.

Proof. We prove it by induction on d. As figure 5.4 shows, there are 2

simplex cells in A2,4. Suppose that there are exactly 2 simplices in Ad′,d′+2 for

d′ < d. As the proof of proposition 5.1.2 shows, Ad,d+2 has one simplex S and

all the other bounded cells are lifted from an Ad−1,d+1 base about an Ad−2,d

axis. Each bounded cell of the axis is a facet of a distinct bounded cell of the

base. Since Ad,d+1 has one more facet than Ad−2,d, one bounded cell in the

base is not touching the axis. The bounded cell has to be a simplex, otherwise

it will be lifted to be a non-simplex prism with more than d + 2 facets, which

is impossible. By the induction hypothesis, the base has exactly 2 simplices,

one of which is lifted to be a simplex prism as stated above. The other simplex

cell of the base has a facet on the axis and is hence lifted to be a simplex cell

S ′ in Ad,d+2. Obviously any non-simplex cell in the base will not be lifted to

be simplex cell in Ad,d+2. Therefore, S and S ′ are the only 2 simplex cells in

Ad,d+2. ¤

There is a clear one-one correspondence between the simplex cells and the

simplex prism cells in Ad,d+2 for d ≥ 3. Thus, we have:

Lemma 5.1.4 There are exactly 2 simplex prism cells in Ad,d+2 for d ≥ 3.
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Figure 5.4: A2,4

Remark 5.1.5 There is only 1 simplex prism cell in A2,4. Note that in di-

mension 2, a simplex prism is also a square and it is associated to both simplex

cells.

Let A d,d+2 be a simple arrangement formed by d + 2 hyperplanes in di-

mension d. Besides simplices, the bounded cells of A d,d+2 are simple polytopes

with d + 2 facets. The bd
2
c combinatorial types of simple polytopes with d + 2

facets are well-known, see for example [21]. We briefly recall the combinatorial

structure of A d,d+2 as some of the notions presented are used in Section 5.2.

As there is only one combinatorial type of simple arrangement with d + 2 hy-

perplanes, the arrangement A d,d+2 can be obtained from the simplex A d+1,d

by cutting off one its vertices v with the hyperplane hd+2. A prism P with a

simplex base is created. Let us call top base the base of P which belongs to

hd+2 and assume, without loss of generality, that the hyperplane containing the

bottom base of P is hd+1. Besides the simplex defined by v and the vertices of

the top base of P , the remaining d bounded cells of Ad,d+2 are between hd+2

and hd+1. See Figure 5.2 for an illustration the combinatorial structure of A 3,5.

As the projection of A d,d+2 on hd+1 is combinatorially equivalent to A d−1,d+1,
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the d bounded cells between hd+2 and hd+1 can be obtained from the d bounded

cells of Ad−1,d+1 by the shell-lifting of A d−1,d+1 over the ridge hd+1 ∩hd+2; that

is, besides the vertices belonging to hd+1∩hd+2, all the vertices in hd+1 (forming

A d−1,d+1) are lifted. See Figure 5.5 where the skeletons of the d + 1 bounded

cells of A d,d+2 are given for d = 2, 3, . . . , 6. The shell-lifting of the bounded

cells is indicated by an arrow, the vertices not belonging to hd+1 are represented

in black and the simplex cell containing v is the one made of black vertices.

The bounded cells of A d,d+2 are 2 simplices and a pair of each of the bd
2
c com-

binatorial types of simple polytopes with d+2 facets for odd d. For even d one

of the combinatorial type is present only once. Since all the simple polytopes

with d + 2 facets have diameter 2, we have δ(A d,d+2) = 2+2(d−1)
d+1

.

Proposition 5.1.6 As there is only one combinatorial type of simple arrange-

ment with d + 2 hyperplanes, we have ∆A(d, d + 2) = δ(A d,d+2) = 2d
d+1

.

5.2 Hyperplane arrangements with large aver-

age diameter

The arrangements A∗
2,n and A∗

3,n presented in Sections 3 and 4 can be gener-

alized to the arrangement A∗
d,n formed by the following n hyperplanes hd

k for

k = 1, 2, . . . , n. The hyperplanes hd
k = {x : xd+1−k = 0} for k = 1, 2, . . . , d

form the positive orthant, and the hyperplanes hd
k for k = d + 1, . . . , n are

defined by their intersections with the axes x̄i of the positive orthant. We have

hd
k ∩ x̄i = {0, . . . , 0, 1 + (d − i)(k − d − 1)ε, 0, . . . , 0} for i = 1, 2 . . . , d − 1

and hd
k ∩ x̄d = {0, . . . , 0, 1 − (k − d − 1)ε} where ε is a constant satisfying

0 < ε < 1
n−d−1

. The combinatorial structure of A∗
d,n can be derived inductively.
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All the bounded cells of A∗
d,n are on the positive side of hd

1 and hd
2 with the

bounded cells between hd
2 and hd

3 being obtained by the shell-lifting of a combi-

natorial equivalent of A∗
d−1,n−1 over the ridge hd

2∩hd
3, and the bounded cells on

the other side of hd
3 forming a combinatorial equivalent of A∗

d,n−1. The inter-

section A∗
d,n ∩ hd

k is combinatorially equivalent to A∗
d−1,n−1 for k = 2, 3, . . . , d

and removing hd
2 from A∗

d,n yields an arrangement combinatorially equivalent

to A∗
d,n−1. See Figure 4.3 for an arrangement combinatorially equivalent to

A∗
3,6.

Proposition 5.2.1 The arrangement A∗
d,n contains

(
n−d

d

)
cubical cells for n ≥

2d.

Proof. The arrangements A∗
2,n and A∗

3,n contain, respectively,
(

n−d
2

)
and

(
n−d

3

)
cubical cells. The arrangement A∗

d,2d has one cubical cell. As A∗
d,n is

obtained inductively from A∗
d,n−1 by raising A∗

d−1,n−1 over the ridge hd
2 ∩ hd

3,

we count separately the cubical cells between hd
2 and hd

3 and the ones on the

other side of hd
3. The ridge hd

2 ∩ hd
3 is an hyperplane of the arrangements

A∗
d,n∩hd

2 and A∗
d,n∩hd

3 which are both combinatorially equivalent to A∗
d−1,n−1.

Removing hd−1
2 fromA∗

d,n∩hd
2 yields an arrangement combinatorially equivalent

to A∗
d−1,n−2. It implies that

(
(n−2)−(d−1)

d−1

)
cubical cells of A∗

d,n ∩ hd
2 are not

incident to the ridge hd
2 ∩ hd

3. The shell-lifting of these
(

n−d−1
d−1

)
cubical cells (of

dimension d− 1) creates
(

n−d−1
d−1

)
cubical cells between hd

2 and hd
3. As removing

hd
2 from A∗

d,n yields an arrangement combinatorial equivalent to A∗
d,n−1, there

are
(

n−1−d
d

)
cubical cells on the other side of hd

3. Thus, A∗
d,n contains

(
n−d−1

d−1

)
+

(
n−d−1

d

)
=

(
n−d

d

)
cubical cells. ¤
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Remark 5.2.2 A simple hyperplane arrangement A∗
d,n is combinatorially equiv-

alent to the cyclic hyperplane arrangement, see [20] for some combinatorial

properties of the (projective) cyclic hyperplane arrangement. The combinatorics

of the addition of a (pseudo) hyperplane to the cyclic hyperplane arrangement

is studied in details in [37]. For example, the arrangements A∗
2,6 and Ao

2,6

correspond to the top and bottom elements of the higher Bruhat order B(5, 2)

given in Figure 3 of [37].

Corollary 5.2.3 We have δ(A∗
d,n) ≥ d(n−d

d )
(n−1

d )
for n ≥ 2d. It implies that for d

fixed, ∆A(d, n) is arbitrarily close to d for n large enough.

Similarly we can inductively count (n−d) simplices and (n−d)(n−d−1)

bounded cells of A∗
d,n combinatorially equivalent to a prism with a simplex

base. We have (n−1)− (d−1) simplices in A∗
d,n∩hd

2 and, since removing hd−1
2

from A∗
d,n ∩ hd

2 yields an arrangement combinatorially equivalent to A∗
d−1,n−2,

only one of these (n− d) simplices of A∗
d,n ∩ hd

2 is incident to the ridge hd
2 ∩ hd

3.

Thus, between hd
2 and hd

3, we have one simplex incident to the ridge hd
2 ∩ hd

3

and (n− d− 1) cells combinatorially equivalent to a prism with a simplex base

not incident to the ridge hd
2 ∩ hd

3. In addition, (n− d− 1) cells combinatorially

equivalent to a prism with a simplex base are incident to the ridge hd
2 ∩ hd

3 and

between hd
2 and hd

3. These (n−d−1) cells correspond to the truncations of the

simplex A∗
d,d+1 by hd

k for k = d + 2, d + 3, . . . , n. Thus, we have 2(n − d − 1)

cells combinatorially equivalent to a prism with a simplex base between hd
2 and

hd
3. As the other side of hd

3 is combinatorially equivalent to A∗
d,n−1, it contains

(n− 1− d) simplices and (n− d− 1)(n− d− 2) bounded cells combinatorially

equivalent to a prism with a simplex base. Thus, A∗
d,n has (n− d− 1)(n− d−

2)+2(n−d−1) = (n−d)(n−d−1) cells combinatorially equivalent to a prism
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with a simplex base and (n− d) simplices. As a prim with a simplex base has

diameter 2 and the diameter of a bounded cell is at least 1, Corollary 5.2.3 can

be slightly strengthened to the following corollary.

Corollary 5.2.4 We have ∆A(d, n) ≥ 1 +
(d−1)(n−d

d )+(n−d)(n−d−1)

(n−1
d )

for n ≥ 2d.
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Figure 5.5: The skeletons of the d+1 bounded cells of Ad,d+2 for d = 2, 3, . . . , 6.

45



Chapter 6

Computational Approach

Along the theoretic approach, we developed code to check the conjectures and

provide some insight into the combinatorial structure of the hyperplane ar-

rangement.

Computer plays an important role in enumerative combinatorics, as the

size of a problem usually grows too fast to be handled by human. The enumer-

ation of the combinatorial types of simple arrangement (A d,n) is very expensive

even for relatively small n and d. Another difficulty arises from the numerical

problems in floating point computations.

6.1 Enumeration of simple hyperplane arrange-

ments

To enumerate arrangements directly is considered to be very hard. To the best

of our knowledge, it has to done indirectly; that is, by first enumerating a com-

binatorial abstract generalization, i.e. oriented matroids, and then returning

to hyperplane arrangements, see [18].

Simple arrangements with 6 and 7 lines (A 2,6 and A 2,7), with 6 planes
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(A 3,6) are enumerated1 and analyzed. These computations helped us to iden-

tify and understand some of their combinatorial properties. The enumeration

of the oriented matroids is based on Finschi’s online database [30], presented

as chirotopes (RevLex-Index) . For the theoretical background and computa-

tional framework for generating oriented matroids, see [19, 17]. The Perl codes

written by Nakayama [28] are used to convert the chirotopes to hyperplane ar-

rangement representations, as a list of the equations of the hyperplanes forming

the arrangement [27]. See Appendix B.2 for an illustration.

6.2 Enumeration of the bounded cells of hy-

perplane arrangements

Given a simple arrangement A d,n, we are mainly interested in its average di-

ameter, its combinatorial type, and its bounded cells. Therefore, one key com-

putation is the enumeration of the bounded cells of a hyperplane arrangement.

Edelsbrunner describes in Chapter 7 of [14] an incremental algorithm of

arrangement construction, which lists all the faces (including cells) as well as

their incidences. The running time is O(nd), which is optimal as A d,n has Ω(nd)

faces.

There also exists a reverse search algorithm [2] that is dedicated to ar-

rangement cell enumeration [36]. The running time is O(n · |C|), where C is

the set of cells. According to Theorem 1.2.4, in A d,n, |C| = ∑d
i=0

(
n
i

)
= Θ(nd).

So, in our case the cost is O(nd+1).

In terms of efficiency, the above algorithms are both good candidates for

the cells enumeration needed for this thesis. However, efficiency is not our

1Our enumeration of A 2,7 is not yet complete.
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main consideration as we currently consider low dimensions and small number

of hyperplanes. Weibel’s minksum package [25, 16], which is very handy, gives

the sign vectors associated with the cells, making it easier to analyze the cells

combinatorial properties. In order to use minksum, which is originally meant

for polyhedral computation, the relationship between linear arrangements and

zonotopes described in Section 1.4 is exploited. Followed are some details about

minksum.

Given a d-dimensional arrangement A d,n which is formed by hyperplanes

h1, h2, · · · , hn, it is first transformed to a linear arrangement by dimension

lifting A d,n to A d+1,n formed by h′1, h
′
2, · · · , h′n (see Figure 5.3): A d,n is lifted

to plane xd+1 = 1 in IRd+1 and the hyperplane h′i in A d+1,n contains the origin

and hi in A d,n (i = 1, 2, · · · , n). See Appendix B.1 for the computational

aspects of dimension lifting.

After the dimension lifting procedure, the normal vectors of A d+1,n, which

can also be viewed as line segments, are given as input to minksum to compute

the Minkowski sum of the line segments, which is a zonotope. By Proposi-

tion 1.4.2, this zonotope corresponds in the dual space to A d+1,n. So minksum

outputs the combinatorial structure of A d+1,n including the sign vectors for

each cell of A d+1,n. Since A d+1,n is linear, each cell is a cone that is pointed

at the origin. To get the original cell in A d,n, we use sign vectors to find the

bounding hyperplanes and use cdd [9] library to get the V -representation of

the cell, as well as the adjacency information between vertices and facets. See

Appendix B.3 for an illustration of minksum computation.

Remark 6.2.1 While we use minksum just for line segments (1-dimensional

polytopes), minksum can compute Minkowski sum of polytopes in general di-
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mensions.

6.3 Average diameter computation

The pseudo-code for the computation of average diameter δ of a given arrange-

ment A d,n is given in Algorithm 1. A d,n is represented as a list of n hyperplane

equations. Besides δ, the set of bounded cells F+
d (in terms of sign vectors) and

the number of external facets f 0
d−1(A d,n) are also computed.

First A d,n is dimension-lifted to a linear arrangement A d+1,n (see Ap-

pendix B.1). Then, as presented in Section 6.2, minksum package is used to

enumerate the cells ofA d+1,n in the form of sign vectors. Based on each sign vec-

tor, we can get the inequalities (H-representation) that define the corresponding

cell. Once we obtained the list of the bounded cells as H-representations, we

simply consider their skeletons given as byproducts of the conversion from H-

representation to V -representation. Finally, we use classic graphs algorithms2

to compute the average diameter.

2For graph algorithms, the Python library NetworkX is used.
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Algorithm 1: AverageDiameter

input : A d,n

output: δ, F+
d , f 0

d−1(A d,n)

Initialize δ, F+
d , f 0

d−1(A d,n);1

A d+1,n ← DimensionLift (A d,n);2

SignVectors ← EnumerateCells (A d+1,n); /* minksum */3

foreach SignVector ∈ SignVectors do4

if IsBounded (A d,n, SignVector) then5

G ← GetSkeleton (A d,n, SignVector);6

UpdateAverageDiameter (δ, Diameter (G));7

F+
d ← F+

d ∪ SignVector;8

/* get the indices of the hyperplanes that tightly

bound the cell: */

IND ← RemoveRedundancy (A d,n, SignVector);9

foreach ind ∈ IND do10

/* invert the ind’th sign of SignVector to get the

neighboring cell: */

SignVectorNeighbor ← Invert (SignVector, ind);11

if IsBounded (A d,n, SignVectorNeighbor) then12

f 0
d−1(A d,n) ← f 0

d−1(A d,n) + 1;13

return δ, F+
d , f 0

d−1(A d,n);14

For a cell P given as H-representation, the cdd package is used to check

whether P is bounded or not. In the computation for the V -representation

of P , cdd calculates both the extreme points {v1,v2, · · · ,vp} and the rays

{s1, s2, · · · , sq} that defines P , i.e.,

P = conv(v1,v2, · · · ,vp) + cone(s1, s2, · · · , sq),

where conv stands for the convect hull of, and cone for the conical hull

of. The unboundedness of P is indicated by t he presence of rays in the V -

representation, see Algorithm 2.
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Algorithm 2: IsBounded

input : A d,n, SignVector.
output: True if the cell represented by SignVector is bounded,

otherwise False.
Hrep ← GetHRepresentation (A d,n, SignVector);1

Vrep ← GetVRepresentation (Hrep);2

if HasRay (Vrep) then return False else return True;3

Redundancy removal is also one of the options of the cdd package3. Each

facet of the cell P corresponds to an inequality that tightly bounds P . Let the

inequality related to some facet F be the ith one. Then inverting the ith sign

of P ’s sign vector yields the neighboring cell P ′ that shares the facet F with

P . Recall that a facet is external if it belongs to exactly one bounded cell. So,

whether F is external can be determined by checking the boundedness of P

and P ′.

The algorithm is implemented using Python [31], a scripting language

influenced by Perl. As a “glue language”, its strong text processing capability

makes it ideal for this project, in which most of the computation extensive

tasks are taken over by existing softwares (CDD, minksum, Nakayama’s codes)

with different input/output formats. Additionally, Python’s loose syntax and

rich external modules (e.g. NetworkX for graph handling) are quite convenient.

My choice of Python, among similar languages, was motivated by my previous

experience with Python.

3Redundancy removal is only available in cdd+.
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Chapter 7

Concluding Remarks

We investigate combinatorial properties of hyperplane arrangements with a

focus on estimating the average diameter of a bounded cell and the complexity

of the envelope of simple arrangements defined by n hyperplanes in dimension

d. In particular we substantiate two recent conjectures of Deza, Terlaky and

Zinchenko.

We provide exact values for the average diameter in the plane, and asymp-

totically equal upper and lower bounds in dimension 3. In general, we provide a

lower bound arbitrarily close to the dimension d as n goes to infinity. If Hirsch

conjecture holds, the upper and lower bounds are asymptotically equal in fixed

dimension.

Besides Hirsch conjecture, we discuss links with a recent result of Dedieu,

Malajovich and Shub, and with a result of Haimovich. Computational tools

to generate and compute hyperplane arrangements are presented together with

preliminary computational results.

Future works include further efforts to exploit Haimovich’s result and

oriented matroids’ rich theory. One natural generalization is to look at the
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same conjectures of Deza, Terlaky and Zinchenko for oriented matroids instead

of hyperplane arrangements. It would be also important to tackle numerical

problems which occur as the dimension and number of hyperplanes increase.

Adopting rational number computation would be our first step.
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Appendix A

Theoretical Framework

A.1 Example oriented matroids

We illustrate some of properties of oriented matroids by few examples. For an

example of orient matroid associated to vector configuration, see Example 1. A

point configuration X = {x1,x2, · · · ,xn} ⊆ IRd is a set of finitely many points

in affine space IRd. By abuse of notation, X also denotes the r × n matrix

[x1,x2, · · · ,xn]. An affine dependency of X is a vector z ∈ IRn satisfying

1Tz = 0 and Xz = 0.

Example 3 (oriented matroid associated with point configuration) Let

M = (E, C) be the oriented matroid associated with the point configuration{(
1
0

)
,

(
1
3
1
3

)
,

(
0
1
2

)
,

( −1
1

)}
. Then E is the set of points. The set of

circuits C includes the sign vectors of the minimal affine dependencies. For

example,




1
3

−1
2
3

0


 is a minimal affine dependency and its sign vector




+
−
+
0




is one of the circuits of M.

M is the same as the oriented matroid of the vector configuration in Ex-
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ample 1 as the point configuration can be obtained from the vector configuration

by the mapping v → v
c·v , where c =

(
1
2

)
(see Figure A.1).

Figure A.1: The vector configuration (left) and the point configuration (right)
have the same oriented matroid.

The oriented matroid associated to a linear hyperplane arrangement cor-

responds naturally to the oriented matroid of the vector configuration consisting

of the normal vectors of the hyperplanes.

A.2 Permutahedron of order 4 - an example of

zonotope

A permutahedron of order 4 is the convex hull of the permutations of




1
2
3
4




and form a 3-polytope, see Figure A.21.

Being a zonotope, the permutahedron is

(1) the image of 6-cube under affine projection π : IR6 → IR4, π(x) = Ax+ 5
2
1,

1picture courtesy of http://www.antiquark.com.
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Figure A.2: Permutahedron of order 4.

where

A =

[
e2 − e1

2
,
e3 − e1

2
,
e4 − e1

2
,
e3 − e2

2
,
e4 − e2

2
,
e4 − e3

2

]

=
1

2




−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1




, and

(2) the Minkowski sum of the following 6 line segments:

[
−e2 − e1

2
,
e2 − e1

2

]
,

[
−e3 − e1

2
,
e3 − e1

2

]
,

[
−e4 − e1

2
,
e4 − e1

2

]
,

[
−e3 − e2

2
,
e3 − e2

2

]
,

[
−e4 − e2

2
,
e4 − e2

2

]
,

[
−e4 − e3

2
,
e4 − e3

2

]
.
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The permutahedron is associated, through normal fan, to the arrangement

formed by 6 linear hyperplanes whose norm vectors are

e2 − e1

2
,
e3 − e1

2
,
e4 − e1

2
,
e3 − e2

2
,
e4 − e2

2
,
e4 − e3

2
.
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Appendix B

Computational Framework

B.1 Hyperplane dimension lifting

Given a d-dimensional hyperplane a1x1 + a2x2 + · · ·+ adxd = b, it can be lifted

along the extra dimension such that the (n + 1)th coordinate xd+1 of every

point in the hyperplane is the same. For simplicity, let xd+1 = 1. The norm

of the (d + 1)-dimensional hyperplane that contains the origin and the lifted

d-dimensional hyperplane is (a1, a2, · · · , an,−b). We illustrate this property

for the dimension lifting from dimension 2 to 3. Let a1x1 + a2x2 = b be the

equation of the line to be lifted. Then the intersection of the line with x1 and

x2 axes are b
a1

and b
a2

respectively. According to Figure B.1, we have

~AB =
(

b
a1

,− b
a2

)

~A′B′ =
(

b
a1

,− b
a2

, 0
)

~OA′ =
(

b
a1

, 0, 1
)

.

The normal vector of the plane OA′B′ is

~OA′ × ~A′B′

=
(

b
a1

, 0, 1
)
×

(
b
a1

,− b
a2

, 0
)

=
(

b
a2

, b
a1

,− b2

a1a2

)
,
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which can be formulated to (a1, a2,−b).

The formula for general dimensions can be obtained similarly.

Figure B.1: Hyperplane dimension lifting from dimension 2 to 3.

B.2 Oriented matroid and arrangement repre-

sentation

Given an oriented matroid as a chirotope, Hiroki Nakayama’s codes are used to

check its realizability and, when realizable, to convert it to the corresponding

arrangement representation. The codes are based on Nakayama’s PhD disser-

tation [27]. We illustrate this procedure by showing how the representation of

Ao
2,6 is obtained.

All chirotopes corresponding to A 2,6 can be found in the catalog of hyper-

plane arrangements (rank=3, card=7) in Finschi’s online database [30]. The

chirotope of Ao
2,6 is
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11121121231121231234112123123412345
22332334442334445555233444555566666
34445555556666666666777777777777777

++++++++++++++++++++++++++++++-++++.

There are
(
7
3

)
= 35 signs, which are in reverse lexicographic order of their in-

dices. The only negative sign is the one that is associated with the determinant

of the matrix formed by vectors 1, 6 and 7, denoted by [167] = −.

Recall that Realizing the oriented matroid is equivalent to finding vectors

v1,v2, · · · ,v7 ∈ IR3 such that the signs of the maximal minors of the matrix

[v1,v2, · · · ,v7] confirm with the chirotope. Since at least one of the signs is

+, we can assume that one of the 3 × 3 submatrix is the identity matrix, i.e.,

3 of the vectors are




1
0
0


,




0
1
0


 and




0
0
1


.

The minimal reduced system of the chirotope is computed first. It consists

of [237], [234], [346], [347], [267], [167], [567], [467], [157], [123], [367], [456], [345].

Then the realizability of the oriented matroid is checked by computing its solv-

ability sequence. If realizable, each unknown variable in the above matrix is

assigned with a proper value and the vector configuration is obtained:


−1 1 1 1 1 0 0
−2 −1 0 1

2
1 1 0

6 5
2

0 −3
4
−1 0 1


 . (2.2.1)

The last step is to convert the vector configuration in dimension 3 to

the corresponding arrangement in dimension 2, which is straightforward as the

configuration is naturally associated with a linear hyperplane arrangement by

identifying the vectors as the normal vectors of the hyperplanes in the arrange-

ment. The 3-dimensional linear hyperplane arrangement is then converted to

an plane arrangement by a a reversed procedure of dimension lifting described
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in Appendix B.1. The equations of the 6 lines (one of the vectors corresponding

to the infinity hyperplane) in Ao
2,6 are

−x− 2y + 6 = 0
x− y + 5

2
= 0

x = 0
x + 1

2
y − 3

4
= 0

x + y − 1 = 0
y = 0.

B.3 Minksum package

minksum [25, 16] is a software package that computes the Minkowski sum of

polytopes. We illustrate how we used for arrangement computation.

Let A be a 2D linear arrangement formed by lines x = 0, y = 0 and

x + y = 0, whose normal vectors are (0, 1), (1, 0) and (1, 1) respectively. In

order to get the sign vectors of each cell in A, 3 line segments indicated by the

normal vectors are used as the input to minksum. Followed are the the input

and output.

INPUT:

3

[[0,0],[1,0]]

[[0,0],[0,1]]

[[0,0],[1,1]]

OUTPUT:

[1,2,1] : [0,1] : [-2,1]
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Figure B.2: Example of using minksum.

[1,2,2] : [1,2] : [-1,2]

[1,1,1] : [0,0] : [-1,-1]

[2,1,1] : [1,0] : [1,-2]

[2,1,2] : [2,1] : [2,-1]

[2,2,2] : [2,2] : [1,1]

The first column of the output lists the sign vectors of the 6 cells of A
(“1” for “-”, “2” for “+”); the third column gives a point in each cell. The

Minkowski sum is a zonotope with 6 vertices, which are listed in the second

column.

Figure B.2 illustrates the Minkowski sum and what is happening in the

dual space.
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Appendix C

Preliminary Computational
Results

In the following tables, the first column are the ID’s of the simple arrangement,

which are actually the sequence numbers of the arrangements in the enumer-

ation. For each arrangement, we list its diameter, the number of each type of

its bounded cells and the number of its external facets.

C.1 Line arrangements with 6 lines

We use f+
2,i(A2,6) (3 ≤ i ≤ 6) to denote the number of bounded cells with i

facets, or polygons with i edges. Notice that
∑6

i=3 f+
2,i(A2,6) = f+

2 (A2,6) = 10.
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ID δ f+
2,i (3 ≤ i ≤ 6) f 0

1

1 1.5 5,3,2,0 11
2 1.6 4,5,1,0 11
3 1.5 5,3,2,0 12
4 1.6 4,6,0,0 12
5 1.6 4,5,1,0 11
6 1.5 5,4,1,0 12
7 1.5 5,3,2,0 11
8 1.6 4,6,0,0 12
9 1.4 6,2,2,0 12
10 1.5 5,4,1,0 12
11 1.6 4,6,0,0 12
12 1.6 4,5,1,0 11
13 1.6 4,5,1,0 11
14 1.5 5,4,1,0 12
15 1.5 6,3,0,1 12
16 1.3 7,0,3,0 12
17 1.4 6,3,1,0 13
18 1.4 6,3,1,0 13
19 1.5 6,3,0,1 12
20 1.5 5,3,2,0 11
21 1.5 5,4,1,0 12
22 1.6 4,5,1,0 11

ID δ f+
2,i (3 ≤ i ≤ 6) f 0

1

23 1.6 4,6,0,0 12
24 1.4 6,2,2,0 12
25 1.5 5,3,2,0 11
26 1.5 5,4,1,0 12
27 1.6 4,6,0,0 12
28 1.6 4,4,2,0 10
29 1.6 4,6,0,0 12
30 1.6 4,5,1,0 11
31 1.6 4,6,0,0 12
32 1.5 5,3,2,0 11
33 1.6 4,6,0,0 12
34 1.5 5,4,1,0 12
35 1.5 5,4,1,0 12
36 1.6 4,6,0,0 12
37 1.6 5,4,0,1 11
38 1.6 4,6,0,0 12
39 1.6 4,5,1,0 11
40 1.6 4,6,0,0 12
411 1.7 4,5,0,1 10
42 1.6 4,6,0,0 12
432 1.6 4,6,0,0 12

C.2 Line arrangements with 7 lines

We use f+
2,i(A2,7) (3 ≤ i ≤ 7) to denote the number of bounded cells with i

facets, or polygons with i edges. Note that
∑7

i=3 f+
2,i(A2,7) = f+

2 (A2,7) = 15.

1Ao
6,2

2A∗6,2
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

1 1.60 6,7,2,0,0 14
2 1.60 6,6,3,0,0 13
3 1.60 6,7,2,0,0 14
4
5 1.67 5,8,2,0,0 13
6 1.67 5,9,1,0,0 14
7 1.67 5,9,1,0,0 14
8 1.60 6,7,2,0,0 14
9 1.60 6,7,2,0,0 14
10 1.60 6,7,2,0,0 14
11
12
13 1.53 7,5,3,0,0 14
14 1.53 7,5,3,0,0 14
15 1.67 5,9,1,0,0 14
16 1.60 6,7,2,0,0 14
17 1.53 7,6,2,0,0 15
18 1.60 6,7,2,0,0 14
19 1.53 7,5,3,0,0 14
20
21 1.47 8,3,4,0,0 14
22 1.40 9,3,3,0,0 16
23
24 1.40 10,1,3,1,0 15
25
26 1.47 8,5,2,0,0 16
27 1.53 7,6,2,0,0 15
28 1.47 8,5,2,0,0 16
29
30
31 1.47 9,2,3,1,0 14
32 1.47 9,3,2,1,0 15
33 1.47 8,4,3,0,0 15
34 1.47 8,4,3,0,0 15
35 1.47 8,4,3,0,0 15

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

36 1.53 7,5,3,0,0 14
37 1.47 8,5,2,0,0 16
38 1.53 8,3,3,1,0 13
39 1.47 9,3,2,1,0 15
40 1.47 8,4,3,0,0 15
41 1.47 8,4,3,0,0 15
42 1.47 8,5,2,0,0 16
43 1.47 8,3,4,0,0 14
44
45 1.47 8,3,4,0,0 14
46 1.47 8,4,3,0,0 15
47
48
49
50 1.47 9,2,3,1,0 14
51 1.47 8,4,3,0,0 15
52
53 1.40 10,2,2,1,0 16
54 1.40 9,4,2,0,0 17
55 1.53 7,6,2,0,0 15
56 1.47 8,4,3,0,0 15
57 1.47 9,3,2,1,0 15
58
59
60 1.60 6,7,2,0,0 14
61 1.53 7,5,3,0,0 14
62
63 1.60 6,7,2,0,0 14
64 1.60 6,6,3,0,0 13
65 1.67 5,9,1,0,0 14
66 1.60 6,7,2,0,0 14
67 1.53 7,5,3,0,0 14
68 1.53 7,5,3,0,0 14
69 1.60 6,7,2,0,0 14
70 1.60 6,7,2,0,0 14
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

71
72 1.67 5,9,1,0,0 14
73 1.67 5,9,1,0,0 14
74 1.67 5,8,2,0,0 13
75 1.67 5,8,2,0,0 13
76 1.67 5,9,1,0,0 14
77 1.67 5,9,1,0,0 14
78 1.60 6,7,2,0,0 14
79 1.60 6,6,3,0,0 13
80 1.53 7,5,3,0,0 14
81 1.60 6,8,1,0,0 15
82 1.53 7,6,2,0,0 15
83 1.60 6,6,3,0,0 13
84 1.60 6,7,2,0,0 14
85 1.60 6,7,2,0,0 14
86 1.53 7,5,3,0,0 14
87 1.47 8,4,3,0,0 15
88 1.47 8,4,3,0,0 15
89 1.47 8,3,4,0,0 14
90
91 1.53 7,6,2,0,0 15
92 1.53 7,5,3,0,0 14
93 1.60 6,7,2,0,0 14
94
95
96 1.47 8,4,3,0,0 15
97
98 1.47 8,4,3,0,0 15
99 1.47 8,3,4,0,0 14
100 1.53 7,5,3,0,0 14
101 1.53 7,6,2,0,0 15
102 1.53 8,4,2,1,0 14
103
104
105 1.67 5,8,2,0,0 13

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

106 1.60 6,6,3,0,0 13
107 1.60 6,8,1,0,0 15
108 1.67 5,10,0,0,0 15
109 1.60 6,7,2,0,0 14
110 1.40 9,3,3,0,0 16
111 1.47 9,3,2,1,0 15
112 1.47 9,3,2,1,0 15
113 1.40 9,3,3,0,0 16
114
115 1.53 7,6,2,0,0 15
116 1.60 6,7,2,0,0 14
117 1.53 7,5,3,0,0 14
118 1.60 6,7,2,0,0 14
119 1.47 8,4,3,0,0 15
120 1.53 7,5,3,0,0 14
121 1.47 8,3,4,0,0 14
122 1.60 6,7,2,0,0 14
123 1.53 7,6,2,0,0 15
124 1.53 7,5,3,0,0 14
125 1.53 7,4,4,0,0 13
126 1.53 7,5,3,0,0 14
127 1.47 8,4,3,0,0 15
128 1.53 7,6,2,0,0 15
129 1.60 6,7,2,0,0 14
130 1.60 6,7,2,0,0 14
131 1.60 6,7,2,0,0 14
132 1.67 5,8,2,0,0 13
133 1.60 6,6,3,0,0 13
134 1.60 6,6,3,0,0 13
135 1.67 5,8,2,0,0 13
136 1.67 5,9,1,0,0 14
137 1.60 6,7,2,0,0 14
138 1.60 6,7,2,0,0 14
139 1.53 7,5,3,0,0 14
140 1.47 8,3,4,0,0 14
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

141 1.53 7,4,4,0,0 13
142 1.60 6,8,1,0,0 15
143 1.47 8,4,3,0,0 15
144 1.53 7,6,2,0,0 15
145 1.60 6,7,2,0,0 14
146 1.60 6,7,2,0,0 14
147 1.60 6,7,2,0,0 14
148 1.53 7,5,3,0,0 14
149 1.60 6,6,3,0,0 13
150 1.60 6,7,2,0,0 14
151 1.60 6,6,3,0,0 13
152 1.60 6,7,2,0,0 14
153 1.53 7,6,2,0,0 15
154 1.60 6,8,1,0,0 15
155 1.60 6,7,2,0,0 14
156 1.60 6,7,2,0,0 14
157 1.53 7,5,3,0,0 14
158 1.60 6,6,3,0,0 13
159 1.53 7,6,2,0,0 15
160 1.53 7,5,3,0,0 14
161 1.60 6,7,2,0,0 14
162 1.67 5,9,1,0,0 14
163 1.60 6,6,3,0,0 13
164 1.60 6,7,2,0,0 14
165 1.67 5,9,1,0,0 14
166 1.67 5,8,2,0,0 13
167 1.60 6,7,2,0,0 14
168 1.60 6,7,2,0,0 14
169 1.60 6,7,2,0,0 14
170 1.67 5,9,1,0,0 14
171 1.60 6,7,2,0,0 14
172 1.60 6,6,3,0,0 13
173 1.67 5,9,1,0,0 14
174 1.67 5,8,2,0,0 13
175 1.60 6,7,2,0,0 14

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

176 1.67 5,8,2,0,0 13
177 1.60 6,7,2,0,0 14
178 1.60 6,8,1,0,0 15
179 1.67 5,8,2,0,0 13
180 1.53 7,5,3,0,0 14
181 1.53 7,5,3,0,0 14
182 1.53 7,6,2,0,0 15
183 1.60 6,7,2,0,0 14
184 1.60 6,7,2,0,0 14
185 1.53 7,5,3,0,0 14
186 1.67 5,9,1,0,0 14
187 1.67 5,8,2,0,0 13
188 1.60 6,7,2,0,0 14
189 1.67 5,9,1,0,0 14
190 1.60 6,7,2,0,0 14
191 1.60 6,8,1,0,0 15
192 1.60 6,6,3,0,0 13
193 1.67 5,8,2,0,0 13
194 1.60 6,7,2,0,0 14
195 1.60 7,6,1,1,0 14
196 1.60 6,8,1,0,0 15
197 1.60 6,8,1,0,0 15
198 1.67 6,8,0,1,0 14
199 1.60 6,7,2,0,0 14
200 1.60 6,7,2,0,0 14
201 1.67 5,9,1,0,0 14
202 1.60 6,7,2,0,0 14
203 1.67 5,10,0,0,0 15
204 1.67 5,9,1,0,0 14
205 1.67 6,8,0,1,0 14
206 1.67 6,7,1,1,0 13
207 1.53 7,6,2,0,0 15
208 1.53 7,7,1,0,0 16
209 1.53 7,6,2,0,0 15
210 1.47 8,4,3,0,0 15
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

211 1.47 8,3,4,0,0 14
212 1.60 7,7,0,1,0 15
213 1.53 7,6,2,0,0 15
214 1.60 7,7,0,1,0 15
215 1.47 8,5,2,0,0 16
216 1.53 8,5,1,1,0 15
217 1.40 9,2,4,0,0 15
218 1.60 7,7,0,1,0 15
219 1.47 9,3,2,1,0 15
220 1.53 7,7,1,0,0 16
221 1.47 8,5,2,0,0 16
222 1.60 7,7,0,1,0 15
223 1.53 7,6,2,0,0 15
224 1.53 7,6,2,0,0 15
225 1.47 8,4,3,0,0 15
226 1.47 8,4,3,0,0 15
227 1.60 6,8,1,0,0 15
228 1.60 7,6,1,1,0 14
229 1.60 7,6,1,1,0 14
230 1.60 7,6,1,1,0 14
231 1.60 7,6,1,1,0 14
232 1.53 7,6,2,0,0 15
233 1.53 7,6,2,0,0 15
234 1.60 6,8,1,0,0 15
235 1.60 7,7,0,1,0 15
236 1.53 7,6,2,0,0 15
237 1.53 7,5,3,0,0 14
238 1.47 8,4,3,0,0 15
239 1.53 7,6,2,0,0 15
240 1.53 8,5,1,1,0 15
241 1.60 7,6,1,1,0 14
242 1.47 8,4,3,0,0 15
243 1.60 7,6,1,1,0 14
244 1.53 7,7,1,0,0 16
245 1.47 9,3,2,1,0 15

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

246 1.47 8,4,3,0,0 15
247 1.47 8,5,2,0,0 16
248 1.53 8,5,1,1,0 15
249 1.60 6,7,2,0,0 14
250 1.53 7,5,3,0,0 14
251 1.60 6,7,2,0,0 14
252 1.67 5,9,1,0,0 14
253 1.60 7,6,1,1,0 14
254 1.60 6,8,1,0,0 15
255 1.60 6,8,1,0,0 15
256 1.60 7,6,1,1,0 14
257 1.53 7,7,1,0,0 16
258 1.40 10,0,4,1,0 14
259 1.47 8,4,3,0,0 15
260 1.47 9,3,2,1,0 15
261 1.47 8,5,2,0,0 16
262 1.53 7,7,1,0,0 16
263 1.53 8,5,1,1,0 15
264 1.53 8,5,1,1,0 15
265 1.67 5,10,0,0,0 15
266 1.60 6,8,1,0,0 15
267 1.60 7,6,1,1,0 14
268 1.60 7,6,1,1,0 14
269 1.53 7,5,3,0,0 14
270 1.60 6,7,2,0,0 14
271 1.60 6,8,1,0,0 15
272 1.60 6,6,3,0,0 13
273 1.60 6,7,2,0,0 14
274 1.53 7,6,2,0,0 15
275 1.60 6,7,2,0,0 14
276 1.53 7,5,3,0,0 14
277 1.53 7,5,3,0,0 14
278 1.53 7,5,3,0,0 14
279 1.47 8,3,4,0,0 14
280 1.53 7,6,2,0,0 15
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

281 1.60 6,7,2,0,0 14
282 1.47 8,4,3,0,0 15
283
284
285 1.47 8,3,4,0,0 14
286
287 1.60 6,8,1,0,0 15
288 1.53 7,6,2,0,0 15
289 1.67 5,10,0,0,0 15
290 1.60 7,5,2,1,0 13
291 1.60 6,7,2,0,0 14
292 1.60 6,7,2,0,0 14
293 1.67 5,8,2,0,0 13
294 1.60 6,6,3,0,0 13
295 1.60 6,6,3,0,0 13
296 1.67 5,9,1,0,0 14
297 1.60 6,7,2,0,0 14
298 1.67 5,10,0,0,0 15
299 1.60 6,7,2,0,0 14
300 1.47 8,4,3,0,0 15
301 1.47 8,2,5,0,0 13
302 1.47 8,4,3,0,0 15
303 1.53 7,5,3,0,0 14
304 1.47 8,3,4,0,0 14
305 1.53 7,6,2,0,0 15
306 1.53 7,6,2,0,0 15
307 1.53 7,6,2,0,0 15
308 1.60 6,7,2,0,0 14
309 1.60 6,8,1,0,0 15
310 1.60 6,8,1,0,0 15
311 1.53 7,6,2,0,0 15
312 1.60 7,5,2,1,0 13
313 1.67 6,8,0,1,0 14
314 1.60 6,7,2,0,0 14
315 1.60 6,7,2,0,0 14

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

316 1.60 6,8,1,0,0 15
317 1.53 7,5,3,0,0 14
318 1.47 8,3,4,0,0 14
319 1.60 6,8,1,0,0 15
320 1.53 8,4,2,1,0 14
321 1.60 6,8,1,0,0 15
322 1.53 7,6,2,0,0 15
323 1.60 7,6,1,1,0 14
324 1.53 7,7,1,0,0 16
325 1.53 8,4,2,1,0 14
326 1.53 8,4,2,1,0 14
327 1.53 8,4,2,1,0 14
328 1.47 8,4,3,0,0 15
329 1.53 7,7,1,0,0 16
330 1.53 7,7,1,0,0 16
331 1.60 7,7,0,1,0 15
332 1.60 7,6,1,1,0 14
333 1.60 6,8,1,0,0 15
334 1.53 7,5,3,0,0 14
335 1.53 7,5,3,0,0 14
336 1.60 6,8,1,0,0 15
337 1.53 7,6,2,0,0 15
338 1.53 8,4,2,1,0 14
339 1.60 7,6,1,1,0 14
340 1.60 6,8,1,0,0 15
341 1.53 7,6,2,0,0 15
342 1.53 8,4,2,1,0 14
343 1.60 6,7,2,0,0 14
344 1.53 7,5,3,0,0 14
345 1.53 7,5,3,0,0 14
346 1.60 6,8,1,0,0 15
347 1.53 8,5,1,1,0 15
348 1.53 8,4,2,1,0 14
349 1.47 8,4,3,0,0 15
350 1.53 7,7,1,0,0 16
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

351 1.53 7,7,1,0,0 16
352 1.60 7,7,0,1,0 15
353 1.47 8,5,2,0,0 16
354 1.47 8,4,3,0,0 15
355 1.47 8,4,3,0,0 15
356 1.47 8,4,3,0,0 15
357 1.47 9,3,2,1,0 15
358 1.40 9,2,4,0,0 15
359 1.47 8,4,3,0,0 15
360 1.60 7,6,1,1,0 14
361 1.47 8,5,2,0,0 16
362 1.47 8,4,3,0,0 15
363 1.47 8,4,3,0,0 15
364 1.47 9,3,2,1,0 15
365 1.47 8,3,4,0,0 14
366 1.47 8,4,3,0,0 15
367 1.47 8,4,3,0,0 15
368 1.53 8,5,1,1,0 15
369 1.60 6,8,1,0,0 15
370 1.60 6,7,2,0,0 14
371 1.60 7,6,1,1,0 14
372 1.60 6,7,2,0,0 14
373 1.53 7,5,3,0,0 14
374 1.53 7,5,3,0,0 14
375 1.53 8,4,2,1,0 14
376
377 1.53 7,6,2,0,0 15
378 1.60 6,8,1,0,0 15
379 1.60 7,6,1,1,0 14
380 1.53 7,6,2,0,0 15
381 1.67 5,8,2,0,0 13
382 1.60 6,6,3,0,0 13
383 1.60 6,7,2,0,0 14
384 1.60 6,8,1,0,0 15
385 1.67 5,10,0,0,0 15

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

386 1.60 6,6,3,0,0 13
387 1.67 5,8,2,0,0 13
388 1.60 6,7,2,0,0 14
389 1.60 6,8,1,0,0 15
390 1.53 7,5,3,0,0 14
391 1.60 6,7,2,0,0 14
392 1.67 5,10,0,0,0 15
393 1.60 6,7,2,0,0 14
394 1.60 7,6,1,1,0 14
395 1.60 7,6,1,1,0 14
396 1.60 6,7,2,0,0 14
397
398 1.40 9,2,4,0,0 15
399 1.47 8,4,3,0,0 15
400 1.47 9,3,2,1,0 15
401 1.47 8,4,3,0,0 15
402 1.47 8,4,3,0,0 15
403 1.53 8,5,1,1,0 15
404 1.53 7,6,2,0,0 15
405 1.53 7,6,2,0,0 15
406 1.53 7,6,2,0,0 15
407 1.53 7,5,3,0,0 14
408 1.60 6,7,2,0,0 14
409 1.47 8,4,3,0,0 15
410 1.53 7,5,3,0,0 14
411 1.53 7,4,4,0,0 13
412 1.60 6,7,2,0,0 14
413 1.53 7,6,2,0,0 15
414 1.60 6,8,1,0,0 15
415 1.53 7,5,3,0,0 14
416 1.53 7,5,3,0,0 14
417 1.53 8,4,2,1,0 14
418 1.60 6,8,1,0,0 15
419 1.60 7,6,1,1,0 14
420 1.53 7,6,2,0,0 15
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

421 1.53 7,6,2,0,0 15
422 1.53 7,5,3,0,0 14
423 1.60 6,7,2,0,0 14
424 1.47 8,4,3,0,0 15
425 1.47 8,3,4,0,0 14
426 1.60 6,7,2,0,0 14
427 1.53 7,5,3,0,0 14
428 1.60 6,7,2,0,0 14
429 1.60 6,8,1,0,0 15
430 1.60 6,7,2,0,0 14
431 1.60 7,5,2,1,0 13
432 1.60 6,7,2,0,0 14
433 1.60 6,7,2,0,0 14
434 1.60 6,7,2,0,0 14
435 1.60 7,7,0,1,0 15
436 1.60 6,8,1,0,0 15
437 1.53 7,6,2,0,0 15
438 1.47 8,4,3,0,0 15
439 1.47 8,3,4,0,0 14
440 1.53 7,6,2,0,0 15
441 1.47 9,3,2,1,0 15
442 1.53 7,6,2,0,0 15
443 1.53 7,6,2,0,0 15
444 1.60 6,8,1,0,0 15
445 1.60 7,5,2,1,0 13
446 1.60 7,5,2,1,0 13
447 1.53 7,5,3,0,0 14
448 1.53 7,6,2,0,0 15
449 1.60 6,8,1,0,0 15
450 1.60 6,6,3,0,0 13
451 1.60 6,8,1,0,0 15
452 1.60 6,6,3,0,0 13
453 1.67 5,9,1,0,0 14
454 1.60 6,6,3,0,0 13
455 1.60 6,7,2,0,0 14

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

456 1.67 5,9,1,0,0 14
457 1.67 5,9,1,0,0 14
458 1.53 7,6,2,0,0 15
459 1.60 6,6,3,0,0 13
460 1.53 7,4,4,0,0 13
461 1.60 6,7,2,0,0 14
462 1.53 7,5,3,0,0 14
463 1.67 5,9,1,0,0 14
464 1.60 6,7,2,0,0 14
465 1.67 5,9,1,0,0 14
466 1.67 5,9,1,0,0 14
467 1.67 5,7,3,0,0 12
468 1.67 5,9,1,0,0 14
469 1.67 5,8,2,0,0 13
470 1.67 5,9,1,0,0 14
471 1.67 5,8,2,0,0 13
472 1.67 5,8,2,0,0 13
473 1.67 5,10,0,0,0 15
474 1.60 6,7,2,0,0 14
475 1.53 7,6,2,0,0 15
476 1.53 7,5,3,0,0 14
477 1.60 6,7,2,0,0 14
478 1.67 5,10,0,0,0 15
479 1.67 6,7,1,1,0 13
480 1.60 7,6,1,1,0 14
481 1.60 6,8,1,0,0 15
482 1.53 7,6,2,0,0 15
483 1.60 6,7,2,0,0 14
484 1.53 7,5,3,0,0 14
485 1.60 6,7,2,0,0 14
486 1.67 5,10,0,0,0 15
487 1.60 7,6,1,1,0 14
488 1.67 5,9,1,0,0 14
489 1.67 5,9,1,0,0 14
490 1.60 6,8,1,0,0 15
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

491 1.67 5,10,0,0,0 15
492 1.67 6,8,0,1,0 14
493 1.67 6,7,1,1,0 13
494 1.67 5,10,0,0,0 15
495 1.60 6,7,2,0,0 14
496 1.60 6,5,4,0,0 12
497 1.67 5,9,1,0,0 14
498 1.60 6,6,3,0,0 13
499 1.60 6,7,2,0,0 14
500 1.67 5,8,2,0,0 13
501 1.60 6,8,1,0,0 15
502 1.67 5,10,0,0,0 15
503 1.67 5,9,1,0,0 14
504 1.60 6,6,3,0,0 13
505 1.60 6,7,2,0,0 14
506 1.60 6,8,1,0,0 15
507 1.67 5,9,1,0,0 14
508 1.67 6,7,1,1,0 13
509 1.67 6,8,0,1,0 14
510 1.67 5,10,0,0,0 15
511 1.47 9,0,5,1,0 12
512 1.47 8,4,3,0,0 15
513 1.53 7,6,2,0,0 15
514 1.53 7,7,1,0,0 16
515 1.60 7,6,1,1,0 14
516
517
518
519 1.47 8,4,3,0,0 15
520 1.60 7,6,1,1,0 14
521 1.53 7,6,2,0,0 15
522
523 1.47 8,4,3,0,0 15
524 1.53 8,3,3,1,0 13
525 1.47 8,4,3,0,0 15

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

526 1.47 8,4,3,0,0 15
527 1.53 7,6,2,0,0 15
528 1.60 7,6,1,1,0 14
529 1.60 6,8,1,0,0 15
530 1.60 6,7,2,0,0 14
531 1.60 6,7,2,0,0 14
532 1.67 6,7,1,1,0 13
533 1.53 7,5,3,0,0 14
534 1.60 6,8,1,0,0 15
535 1.60 6,8,1,0,0 15
536 1.60 7,6,1,1,0 14
537
538 1.47 8,4,3,0,0 15
539 1.40 9,1,5,0,0 14
540 1.53 8,3,3,1,0 13
541 1.53 7,7,1,0,0 16
542 1.53 7,6,2,0,0 15
543 1.53 7,7,1,0,0 16
544 1.60 7,6,1,1,0 14
545 1.60 6,6,3,0,0 13
546 1.60 6,6,3,0,0 13
547 1.60 6,8,1,0,0 15
548 1.53 7,4,4,0,0 13
549 1.60 6,6,3,0,0 13
550 1.60 6,7,2,0,0 14
551 1.53 7,6,2,0,0 15
552 1.67 5,10,0,0,0 15
553 1.60 6,7,2,0,0 14
554 1.53 7,5,3,0,0 14
555 1.60 6,8,1,0,0 15
556 1.53 7,6,2,0,0 15
557 1.60 7,5,2,1,0 13
558 1.67 6,8,0,1,0 14
559 1.60 6,7,2,0,0 14
560 1.67 5,10,0,0,0 15
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

561 1.60 6,7,2,0,0 14
562 1.67 5,9,1,0,0 14
563 1.60 6,8,1,0,0 15
564 1.67 6,6,2,1,0 12
565 1.60 6,7,2,0,0 14
566 1.67 5,10,0,0,0 15
567 1.67 6,7,1,1,0 13
568 1.67 5,10,0,0,0 15
569 1.60 6,7,2,0,0 14
570 1.67 5,8,2,0,0 13
571 1.60 6,7,2,0,0 14
572 1.60 6,6,3,0,0 13
573 1.60 6,7,2,0,0 14
574 1.60 6,7,2,0,0 14
575 1.67 5,9,1,0,0 14
576 1.67 5,9,1,0,0 14
577 1.60 6,6,3,0,0 13
578 1.53 7,5,3,0,0 14
579 1.53 7,5,3,0,0 14
580 1.67 5,9,1,0,0 14
581 1.60 6,8,1,0,0 15
582 1.67 5,10,0,0,0 15
583 1.73 5,8,1,1,0 12
584 1.67 5,9,1,0,0 14
585 1.60 6,7,2,0,0 14
586 1.60 6,7,2,0,0 14
587 1.53 7,5,3,0,0 14
588 1.60 6,8,1,0,0 15
589 1.53 7,5,3,0,0 14
590 1.53 7,4,4,0,0 13
591 1.60 6,7,2,0,0 14
592 1.67 5,9,1,0,0 14
593 1.53 7,5,3,0,0 14
594 1.53 7,5,3,0,0 14
595 1.47 8,3,4,0,0 14

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

596 1.53 7,4,4,0,0 13
597 1.53 7,6,2,0,0 15
598 1.60 6,7,2,0,0 14
599 1.53 7,6,2,0,0 15
600 1.60 6,8,1,0,0 15
601 1.67 5,10,0,0,0 15
602 1.60 6,7,2,0,0 14
603 1.67 6,6,2,1,0 12
604 1.67 5,10,0,0,0 15
605 1.60 6,8,1,0,0 15
606 1.60 6,7,2,0,0 14
607 1.67 6,7,1,1,0 13
608 1.67 5,9,1,0,0 14
609 1.67 5,9,1,0,0 14
610 1.67 5,8,2,0,0 13
611 1.67 5,8,2,0,0 13
612 1.67 5,8,2,0,0 13
613 1.67 5,9,1,0,0 14
614 1.67 5,9,1,0,0 14
615 1.67 5,8,2,0,0 13
616 1.67 5,9,1,0,0 14
617 1.47 8,3,4,0,0 14
618 1.47 8,2,5,0,0 13
619 1.60 6,7,2,0,0 14
620 1.53 7,5,3,0,0 14
621 1.53 7,6,2,0,0 15
622 1.60 6,7,2,0,0 14
623 1.53 7,6,2,0,0 15
624 1.60 6,8,1,0,0 15
625 1.60 6,7,2,0,0 14
626 1.60 6,7,2,0,0 14
627 1.60 6,8,1,0,0 15
628 1.67 5,10,0,0,0 15
629 1.73 5,9,0,1,0 13
630 1.60 6,7,2,0,0 14
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

631 1.67 6,7,1,1,0 13
632 1.67 5,9,1,0,0 14
633 1.60 6,6,3,0,0 13
634 1.60 6,7,2,0,0 14
635 1.67 5,10,0,0,0 15
636 1.67 5,8,2,0,0 13
637 1.67 5,8,2,0,0 13
638 1.60 6,7,2,0,0 14
639 1.67 5,10,0,0,0 15
640 1.60 6,8,1,0,0 15
641 1.60 6,7,2,0,0 14
642 1.60 6,7,2,0,0 14
643 1.60 6,8,1,0,0 15
644 1.60 6,7,2,0,0 14
645 1.73 5,9,0,1,0 13
646 1.67 6,7,1,1,0 13
647 1.67 5,10,0,0,0 15
648 1.67 5,9,1,0,0 14
649 1.67 5,9,1,0,0 14
650 1.73 5,8,1,1,0 12
651 1.67 5,10,0,0,0 15
652 1.67 5,9,1,0,0 14
653 1.60 7,5,2,1,0 13
654 1.60 6,8,1,0,0 15
655 1.60 6,8,1,0,0 15
656 1.67 6,8,0,1,0 14
657 1.60 7,7,0,1,0 15
658 1.40 9,3,3,0,0 16
659 1.47 9,3,2,1,0 15
660 1.47 9,3,2,1,0 15
661 1.40 9,3,3,0,0 16
662 1.60 7,7,0,1,0 15
663 1.53 7,7,1,0,0 16
664 1.53 7,7,1,0,0 16
665 1.53 8,4,2,1,0 14

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

666 1.47 8,4,3,0,0 15
667 1.53 8,4,2,1,0 14
668 1.47 8,4,3,0,0 15
669 1.60 7,7,0,1,0 15
670 1.60 7,7,0,1,0 15
671 1.53 7,7,1,0,0 16
672 1.53 8,4,2,1,0 14
673 1.53 8,4,2,1,0 14
674
675 1.47 8,4,3,0,0 15
676 1.53 7,7,1,0,0 16
677 1.53 7,7,1,0,0 16
678 1.60 7,7,0,1,0 15
679 1.47 8,4,3,0,0 15
680 1.53 8,4,2,1,0 14
681 1.53 8,4,2,1,0 14
682 1.47 8,4,3,0,0 15
683 1.53 7,7,1,0,0 16
684 1.60 7,7,0,1,0 15
685 1.53 7,7,1,0,0 16
686 1.60 7,7,0,1,0 15
687 1.67 5,10,0,0,0 15
688 1.67 6,7,1,1,0 13
689 1.60 6,8,1,0,0 15
690 1.67 6,8,0,1,0 14
691 1.67 6,7,1,1,0 13
692 1.67 5,10,0,0,0 15
693 1.67 5,10,0,0,0 15
694 1.67 6,8,0,1,0 14
695 1.60 6,5,4,0,0 12
696 1.60 6,7,2,0,0 14
697 1.67 5,8,2,0,0 13
698 1.60 6,8,1,0,0 15
699 1.67 5,9,1,0,0 14
700 1.53 7,5,3,0,0 14
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

701 1.60 6,7,2,0,0 14
702 1.60 6,7,2,0,0 14
703 1.53 7,5,3,0,0 14
704 1.67 5,9,1,0,0 14
705 1.53 7,6,2,0,0 15
706 1.60 6,6,3,0,0 13
707 1.60 6,7,2,0,0 14
708 1.53 7,6,2,0,0 15
709 1.60 6,6,3,0,0 13
710 1.53 7,5,3,0,0 14
711 1.60 6,7,2,0,0 14
712 1.67 5,9,1,0,0 14
713 1.60 6,8,1,0,0 15
714 1.60 6,6,3,0,0 13
715 1.60 6,6,3,0,0 13
716 1.60 6,8,1,0,0 15
717 1.67 5,8,2,0,0 13
718 1.60 6,6,3,0,0 13
719 1.67 5,9,1,0,0 14
720 1.67 5,9,1,0,0 14
721 1.60 6,6,3,0,0 13
722 1.53 7,6,2,0,0 15
723 1.53 7,6,2,0,0 15
724 1.53 7,4,4,0,0 13
725 1.60 6,6,3,0,0 13
726 1.60 6,7,2,0,0 14
727 1.60 6,8,1,0,0 15
728 1.67 5,9,1,0,0 14
729 1.67 5,10,0,0,0 15
730 1.67 5,8,2,0,0 13
731 1.67 5,7,3,0,0 12
732 1.67 5,8,2,0,0 13
733 1.67 5,7,3,0,0 12
734 1.67 5,9,1,0,0 14
735 1.67 5,10,0,0,0 15

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

736 1.67 5,9,1,0,0 14
737 1.67 5,9,1,0,0 14
738 1.60 6,6,3,0,0 13
739 1.60 6,7,2,0,0 14
740 1.67 5,10,0,0,0 15
741 1.60 6,8,1,0,0 15
742 1.67 6,7,1,1,0 13
743 1.67 5,9,1,0,0 14
744 1.67 6,8,0,1,0 14
745 1.53 7,6,2,0,0 15
746 1.60 6,8,1,0,0 15
747 1.53 7,5,3,0,0 14
748 1.47 8,3,4,0,0 14
749 1.47 8,4,3,0,0 15
750 1.60 7,6,1,1,0 14
751 1.60 6,8,1,0,0 15
752 1.67 6,8,0,1,0 14
753 1.60 6,7,2,0,0 14
754 1.67 5,9,1,0,0 14
755 1.67 5,9,1,0,0 14
756 1.60 6,7,2,0,0 14
757 1.60 6,8,1,0,0 15
758 1.67 6,7,1,1,0 13
759 1.67 5,9,1,0,0 14
760 1.67 6,8,0,1,0 14
761 1.67 5,9,1,0,0 14
762 1.60 6,7,2,0,0 14
763 1.60 6,8,1,0,0 15
764 1.73 5,9,0,1,0 13
765 1.67 6,7,1,1,0 13
766 1.53 7,6,2,0,0 15
767 1.53 7,5,3,0,0 14
768 1.53 7,5,3,0,0 14
769 1.47 8,4,3,0,0 15
770 1.53 7,6,2,0,0 15
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

771 1.60 7,6,1,1,0 14
772 1.67 6,8,0,1,0 14
773 1.60 6,8,1,0,0 15
774 1.53 7,6,2,0,0 15
775 1.60 6,7,2,0,0 14
776 1.60 6,8,1,0,0 15
777 1.60 6,7,2,0,0 14
778 1.60 6,7,2,0,0 14
779 1.67 6,7,1,1,0 13
780 1.60 7,6,1,1,0 14
781 1.60 6,8,1,0,0 15
782 1.67 5,9,1,0,0 14
783 1.60 6,6,3,0,0 13
784 1.60 6,7,2,0,0 14
785 1.67 5,10,0,0,0 15
786 1.60 6,8,1,0,0 15
787 1.73 5,9,0,1,0 13
788 1.60 6,8,1,0,0 15
789 1.67 6,7,1,1,0 13
790 1.47 8,3,4,0,0 14
791 1.53 7,5,3,0,0 14
792 1.60 6,8,1,0,0 15
793 1.47 8,4,3,0,0 15
794 1.53 7,6,2,0,0 15
795 1.60 7,6,1,1,0 14
796 1.67 6,8,0,1,0 14
797 1.60 6,8,1,0,0 15
798 1.47 8,3,4,0,0 14
799 1.40 9,2,4,0,0 15
800 1.53 7,6,2,0,0 15
801 1.47 8,4,3,0,0 15
802 1.53 7,6,2,0,0 15
803 1.60 7,6,1,1,0 14
804 1.53 8,5,1,1,0 15
805 1.60 6,8,1,0,0 15

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

806 1.53 7,6,2,0,0 15
807 1.53 7,4,4,0,0 13
808 1.60 6,7,2,0,0 14
809 1.60 6,8,1,0,0 15
810 1.67 6,7,1,1,0 13
811 1.60 7,6,1,1,0 14
812 1.67 5,10,0,0,0 15
813 1.60 6,8,1,0,0 15
814 1.67 5,9,1,0,0 14
815 1.67 5,8,2,0,0 13
816 1.67 5,9,1,0,0 14
817 1.67 5,10,0,0,0 15
818 1.67 5,9,1,0,0 14
819 1.73 5,9,0,1,0 13
820 1.73 5,9,0,1,0 13
821 1.67 5,9,1,0,0 14
822 1.67 5,9,1,0,0 14
823 1.60 6,8,1,0,0 15
824 1.67 5,9,1,0,0 14
825 1.60 6,7,2,0,0 14
826 1.60 6,7,2,0,0 14
827 1.67 6,7,1,1,0 13
828 1.67 6,8,0,1,0 14
829 1.67 5,9,1,0,0 14
830 1.60 6,8,1,0,0 15
831 1.60 6,6,3,0,0 13
832 1.67 5,9,1,0,0 14
833 1.60 6,7,2,0,0 14
834 1.67 6,7,1,1,0 13
835 1.67 5,10,0,0,0 15
836 1.67 6,8,0,1,0 14
837 1.67 5,9,1,0,0 14
838 1.73 5,9,0,1,0 13
839 1.67 5,10,0,0,0 15
840 1.40 9,3,3,0,0 16
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

841 1.60 7,7,0,0,1 14
842 1.53 7,7,1,0,0 16
843 1.47 8,4,3,0,0 15
844
845 1.53 7,7,1,0,0 16
846 1.60 7,7,0,0,1 14
847 1.53 7,5,3,0,0 14
848 1.60 6,8,1,0,0 15
849 1.60 6,8,1,0,0 15
850 1.60 6,8,1,0,0 15
851 1.60 7,7,0,0,1 14
852 1.47 8,4,3,0,0 15
853 1.47 8,4,3,0,0 15
854 1.53 7,7,1,0,0 16
855 1.53 7,7,1,0,0 16
856 1.60 7,7,0,0,1 14
857 1.40 9,1,5,0,0 14
858 1.47 8,4,3,0,0 15
859 1.53 7,7,1,0,0 16
860 1.53 7,7,1,0,0 16
861 1.60 7,7,0,0,1 14
862 1.60 6,8,1,0,0 15
863 1.47 8,4,3,0,0 15
864 1.53 7,5,3,0,0 14
865 1.60 7,6,1,1,0 14
866 1.67 5,10,0,0,0 15
867 1.60 6,8,1,0,0 15
868 1.67 5,9,1,0,0 14
869 1.60 6,6,3,0,0 13
870 1.60 6,8,1,0,0 15
871 1.67 5,9,1,0,0 14
872 1.67 6,7,1,1,0 13
873 1.67 6,7,1,1,0 13
874 1.67 5,10,0,0,0 15
875 1.60 6,6,3,0,0 13

ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

876 1.60 6,7,2,0,0 14
877 1.60 6,8,1,0,0 15
878 1.73 5,9,0,1,0 13
879 1.67 5,10,0,0,0 15
880 1.60 6,7,2,0,0 14
881 1.53 7,6,2,0,0 15
882 1.60 6,7,2,0,0 14
883 1.53 7,5,3,0,0 14
884 1.53 7,6,2,0,0 15
885 1.67 6,7,1,1,0 13
886 1.67 6,8,0,1,0 14
887 1.67 5,10,0,0,0 15
888 1.53 7,4,4,0,0 13
889 1.60 6,7,2,0,0 14
890 1.53 7,6,2,0,0 15
891 1.60 6,8,1,0,0 15
892 1.53 7,6,2,0,0 15
893 1.67 6,7,1,1,0 13
894 1.67 6,8,0,1,0 14
895 1.67 5,10,0,0,0 15
896 1.67 5,8,2,0,0 13
897 1.67 5,8,2,0,0 13
898 1.67 5,9,1,0,0 14
899 1.67 5,10,0,0,0 15
900 1.73 5,8,1,1,0 12
901 1.67 5,10,0,0,0 15
902 1.73 5,9,0,1,0 13
903 1.67 5,10,0,0,0 15
904 1.67 5,10,0,0,0 15
905 1.60 6,7,2,0,0 14
906 1.60 6,8,1,0,0 15
907 1.67 6,8,0,0,1 13
908 1.67 5,10,0,0,0 15
909 1.60 6,7,2,0,0 14
910 1.60 6,7,2,0,0 14
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ID δ f+
2,i (3 ≤ i ≤ 7) f 0

1

911 1.67 5,10,0,0,0 15
912 1.60 6,8,1,0,0 15
913 1.60 6,8,1,0,0 15
914 1.67 5,10,0,0,0 15
915 1.67 6,8,0,0,1 13
916 1.67 5,10,0,0,0 15
917 1.67 5,9,1,0,0 14
918 1.67 5,9,1,0,0 14
919 1.67 5,10,0,0,0 15
920 1.73 5,9,0,0,1 12
921 1.67 5,10,0,0,0 15
922 1.67 5,10,0,0,0 15

C.3 Plane arrangements with 6 planes

We use F+
3,i(A3,6) and f+

3,i(A3,6) (4 ≤ i ≤ 6) to denote the type and number

of bounded cells (simple 3-polytopes) with i facets respectively. Obviously,

F+
3,4(A3,6) is tetrahedron and F+

3,5(A3,6) is simplex prism. There are 2 combi-

natorial types of F+
3,6(A3,6): cube and 6-shell, which are denoted by F+

3,6C(A3,6)

and F+
3,6S(A3,6) respectively. Note that

∑6
i=4 f+

3,i(A3,6) = f+
3 (A3,6) = 10.
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ID δ f+
3,4, f

+
3,5, f

+
3,6C , f+

3,6S f 0
2

1 1.8 5,2,0,3 24
2 1.8 4,4,0,2 24
3 1.8 3,6,1,0 24
4 1.8 3,6,1,0 24
5 1.9 3,5,0,2 23
6 1.9 3,5,1,1 23
7 1.8 3,6,1,0 24
8 1.8 4,4,0,2 24
9 1.8 4,4,0,2 24
10 1.8 3,6,1,0 24
11 1.8 3,6,1,0 24
12 1.9 4,3,0,3 23
13 1.9 4,3,0,3 23
14 1.9 3,5,0,2 23
15 1.9 3,5,0,2 23
16 1.8 5,2,0,3 24
17 1.7 5,3,0,2 25
18 1.7 5,3,0,2 25
19 1.8 4,4,0,2 24
20 1.8 4,4,1,1 24
21 1.9 4,3,0,3 23
22 1.9 3,5,1,1 23

ID δ f+
3,4, f

+
3,5, f

+
3,6C , f+

3,6S f 0
2

23 1.8 3,6,1,0 24
24 1.8 5,2,0,3 24
25 1.8 4,4,1,1 24
26 1.9 4,3,0,3 23
27 1.8 3,6,1,0 24
28 1.8 3,6,1,0 24
29 2.0 3,4,0,3 22
30 1.9 3,5,1,1 23
31 1.8 3,6,1,0 24
32 1.8 4,4,0,2 24
33 1.8 4,4,0,2 24
34 1.9 3,5,1,1 23
35 1.9 3,5,0,2 23
36 1.8 3,6,1,0 24
37 1.8 4,4,1,1 24
38 1.8 3,6,1,0 24
39 2.0 3,4,0,3 22
40 1.8 3,6,1,0 24
41 1.9 3,5,1,1 23
42 1.8 3,6,1,0 24
43 1.8 3,6,1,0 24
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H-representation, 49
V -representation, 48, 49
Ao
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Ao

3,n, 26
A∗

2,n, 21
A∗

d,n, 34
3-term Grassmann-Plücker identity, 11

affine dependency, 54
affine projection, 5
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linear, 2, 6, 10
near trivial, 4
projective, 4

basis orientation, 10

cell, 2
bounded, 3

central path, 18
chirotope, 10, 47, 59
circuit, 7, 8, 11, 54
circuit axioms, 8
curvature, 18

total, 18

diameter
arrangement, 14
polytope, 14

dimension raising, 48

edge, 1
Euler’s formula, 13

face
external, 2
internal, 2

facet, 1
bounded, 3

external, 2, 17, 21, 31
fan, 5

complete, 5
normal, 5

Gale transform, 36
affine, 37

graph
k-connected, 13
planar, 13
polytopal, 13
simple, 13

halfspace, 1
closed, 1
valid, 1

Hirsch Conjecture, 15
hyperplane, 1

valid, 1

independence augmentation axiom, 7
independent sets, 7
independent sets axioms, 7

matroid, 7
oriented, 6, 8, 37, 47, 54, 59

minimal reduced system, 12, 60
Minkowski sum, 5
minksum, 48, 49, 61

oriented matroid
coordinatizable, 12
realizable, 12
stretchable, 12
uniform, 11

permutahedron, 6, 55
point configuration, 36, 54
polyhedron, 1
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polytope, 1
H-representation, 2
V-representation, 2

RevLex-Index, 47
ridge, 1

bounded, 4

shadow-vertex algorithm, 17
shell, 28
shell-lifting, 41, 42
sign signature, 9
simplex prism, 36
skeleton, 13

envelope, 13
solvability sequence, 12, 60
Steinitz’ theorem, 13

vector configuration, 9, 36
vectors of oriented matroids, 9
vertex, 1

external, 21, 31

zonotope, 5, 48
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