
Counting External Facets of Simple
Hyperplane Arrangements

Feng Xie

January 7, 2008

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada
xief@mcmaster.ca

Abstract: The number of external facets of a simple arrangement depends on its
combinatorial type. A computation framework for counting the number of external
facets is introduced and improved by exploiting the combinatorial structure of the
set of sign vectors of the cells of the arrangement.

1 Background and introduction

n hyperplanes in dimension d form a hyperplane arrangement. An hyperplane arrangement is
called simple if n ≥ d and any d hyperplanes intersect at a unique distinct point. A facet of
a hyperplane arrangement belongs to either zero, one or two bounded cells. We call a facet
external if it belongs to exactly one bounded cell. It has been shown that the line arrangement
(d = 2) that minimizes the number of external facets maximizes the average diameter, but it
is not known whether this relation holds for general dimension. The computational results for
small n and d will give us a better insight into this problem. One of the computational combi-
natorial problems herein is as following.

Given a simple arrangement Ad,n represented by n inequalities with d variables,
count its external facets.

As an example, Figure 1 shows the enumeration of the 6 line arrangements formed by 5
lines, or A2,5. Among the 6 arrangements, Ao has 8 external facets, which is minimal. The
star-shaped arrangement at the bottom right corner has 10 external facets and all the others
have 9.

Let Ad,n be a simple arrangement formed by hyperplanes h1, h2, . . . , hn. Each hyperplane
partition the space into 2 sides: positive and negative. By giving each hyperplane of Ad,n an
orientation indicating which side is positive, each cell is associated with a sign vector whose ith
element (i = 1, . . . , n) indicates which side of hyperplane hi the cell is located on (+ and − for
positive and negative side respectively). See Figure 2 for the sign vectors of all the cells of Ao

2,4.

1



Ao A*

Figure 1: Enumeration of Ao
2,5

2 Existing algorithm

To solve the problem, the following algorithm is presented in my Masters thesis [5].

2



4

1 2

3

Figure 2: Sign vectors of the cells of Ao
2,4

Algorithm 1: CountExternalFacets
input : A d,n

output: fe (number of external facets)

Initialize fe;1

A d+1,n ← DimensionLift (A d,n);2

SignVectors ← EnumerateCells (A d+1,n); /* minksum */3

foreach SignVector ∈ SignVectors do4

if IsBounded (A d,n, SignVector) then5

/* get the indices of hyperplanes that tightly bound the cell */
IND ← RemoveRedundancy (A d,n, SignVector);6

foreach ind ∈ IND do7

/* invert ind’th sign of SignVector to get the neighboring cell */
SignVectorNeighbor ← Invert (SignVector, ind);8

if IsBounded (A d,n, SignVectorNeighbor) then9

fe ← fe + 1;10

return fe;11

Although the algorithm works for small instances, there is still much room to improve.
Being modeled as linear programming and computational geometry problems respectively, the
subroutines RemoveRedundancy in line 6 and IsBounded in line 9 are the most expensive steps
in the loop.

Given a sign vector of a cell, we have n inequalities that define the cell: {ai
Tx ≤ ci, i =

1, . . . , n}. Some of the inequalities might be redundant. To determine whether the ith inequality
(ai

Tx ≤ ci) is redundant, we can solve the following linear programming problem first.

3







max ai
Tx

s.t. a1
Tx ≤ c1,

· · ·
ai

Tx ≤ ci + 1
· · ·

an
Tx ≤ cn

Let the solution of the problem be f∗. Then ai
Tx ≤ ci is redundant if f∗ ≤ ci. It is known

that a simple arrangement Ad,n has
(
n−1

d

)
bounded cells, and for each bounded cell, there are n

linear programming problems to solve. Therefore, we have to solve n
(
n−1

d

)
linear programming

problems in order to remove all the redundant inequalities.
Given a cell of Ad,n represented by n inequalities, checking its boundedness is equivalent to

the polyhedron vertex enumeration problem, a well studied computational geometry problem.
An algorithm presented in [1] has an output sensitive running time of O(ndv), where v is the
number of vertices of the cell. It is known that a simple arrangement Ad,n has

∑d
i=0

(
n
i

)
cells [3],

which means that we have to solve O(nd) vertex enumeration problems.
As we can see, in this algorithm, the running time spent in redundancy removal and bounded-

ness check explodes as n and d increases. Moreover, numerical difficulties prevent the algorithm
from giving correct results in certain cases.

3 Combinatorial approaches

the set of sign vectors of the cells, corresponding to an oriented matroid [2], is a combinatorial
abstraction of arrangements [4]. Thus, it is possible to tackle the problems of redundancy
removal and boundedness check by purely combinatorial approaches, which are more efficient
and free of numerical difficulties.

3.1 Redundancy removal

The combinatorial approach to redundancy removal is based on the following self-evident fact.

Fact 1 Two cells share a facet if and only if their sign vectors differ by one sign.

Each equality corresponds to a hyperplane where the facets reside. Given a cell P , if an
inequality is redundant, i.e. the corresponding hyperplane does not tightly bound the cell, then
any cell on the other side of the hyperplane has a sign vector with at least 2 signs different
from the sign vector of P . Otherwise, by Fact 1 there exists a cell on the other side of the
hyperplane that shares a facet with P , which is not possible because P is not tightly bounded
by the hyperplane. Therefore, we have the following fact and new algorithm for redundancy
check.

Fact 2 Given the sign vector of a cell of an arrangement A, a hyperplane hi of A is redundant
if the sign vector obtained by negating the sign corresponding to hi does not correspond to a cell
of A.

4



Algorithm 2: RemoveRedundancy
input : SignVector (of a cell), SignVectors (of all cells)
output: IND (indices of nonredundant inequalities)

IND ← φ;1

for i ← 1 to n do2

/* invert i’th sign of SignVector to get the neighboring cell */
SignVectorNeighbor ← Invert (SignVector, i);3

if SignVectorNeighbor ∈ SignVectors then4

IND ← IND ∪{i};5

return IND;6

Obviously, Algorithm 2 drastically improves the efficiency of redundancy removal and is
immune from numerical problems.

3.2 Boundedness check

As described in Section 6.2 of [5], given a simple arrangement A d,n the sign vectors of the cells
of A d,n are obtained by first converting A d,n into a linear arrangement A d+1,n using dimension
lifting (see Figure 3). This way, each cell of A d+1,n, which is an origin-pointed cone, corresponds
to a cell of A d+1,n. To remove symmetry, we extend A d+1,n to A d+1,n+1 by adding a hyperplane
hn+1 with equation xd+1 = 0, where xd+1 is the coordinate variable of the new dimension. Only
the dimension-lifted cells on one side of hn+1 need to be studied. More importantly, hn+1 also
helps to identify the bounded cells of A d,n: It is not hard to see that a cell of A d,n is bounded if
and only if hn+1 tightly bounds the corresponding dimension-raised cell of A d+1,n+1, i.e., hn+1

is nonredundant. This way, the boundedness check problem is transformed into a redundancy
check problem in higher dimension, which has been discussed in the previous section.

Figure 3: Lifting an arrangement from dimension 2 to dimension 3.

5



4 Implementation

All the algorithms are implemented using Python, a scripting language influenced by Perl. As
a “glue language”, its strong text processing capability makes it ideal for this project, in which
most of the computation extensive tasks are taken over by existing softwares (CDD, minksum)
with different input/output formats. Additionally, Python’s loose syntax and rich external
modules are quite convenient.

As far as the graph is concerned, I turn to NetworkX, a third-party Python module that
handles graph representation and common graph subroutines.

References

[1] D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra, Discrete Computational Geometry, 8:295-313 (1992).

[2] A. Bjöner, M. L. Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented
Matroids, Cambridge University Press (1993).

[3] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag (1987).

[4] L. Finschi and K. Fukuda, Combinatorial generation of small point configurations and
hyperplane arrangements, Manuscript.

[5] F. Xie, Hyperplane Arrangements with Large Average Diameter, PhD Thesis, McMaster
University (2007).

6


