An Example of Degeneracy in Linear Programming

An LP is degenerate if in a basic feasible solution, one of the basic variables takes on a zero value. Degeneracy is caused by redundant constraint(s) and could cost simplex method extra iterations, as demonstrated in the following example.

$$\begin{array}{ll} \max & z = x_1 + x_2 + x_3 \\ \text{s.t.} & x_1 + x_2 & \leq 1 \\ & -x_2 + x_3 & \leq 0 \\ & x_1, x_2, x_3 & > 0 \end{array}$$

Note that constraint $x_2 \ge 0$ follows from constraints $-x_2 + x_3 \le 0$ and $x_3 \ge 0$, and is thus redundant. The feasible region, a 3D polytope, is shown in figure 1. Notice that the origin is a vertex of the polytope. It can be transformed into the standard form by introducing two slack variables x_4 and x_5 .

$$\begin{array}{ll} \max & z = x_1 + x_2 + x_3 \\ \text{s.t.} & x_1 + x_2 + x_4 & = 1 \\ & -x_2 + x_3 + x_5 & = 0 \\ & x_1, x_2, x_3, x_4, x_5 & > 0 \end{array}$$

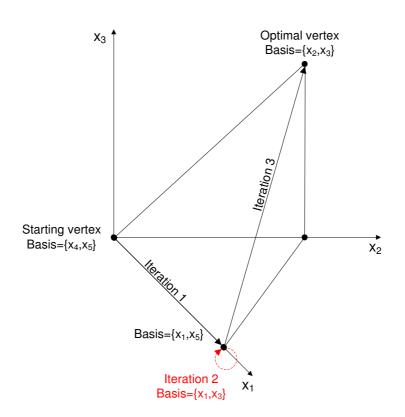


Figure 1: Geometric view of simplex method

We can use the origin as the starting point of simplex method, which corresponds to basic feasible solution: $\{x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0\}$. The tableau is shown below (the basic variables are shown in bold font).

Variables								
Coefficients	1	-1	-1	-1	0	0	=	0
	0	1	1	0	1	0	=	1
	0	0	-1	1	0	1	=	0
Values	0	0	0	0	1	0		

Note that value of basic variable x_5 is 0. For the first iteration of simplex method, there are 3 choices of entering variables: x_1, x_2, x_3 , corresponding to the 3 edges of the polytope that connect the origin to other vertices. We choose x_1 . (In practice, the choice of entering variable is determined by the pivot rule used.) The leaving variable should be x_4 .

Variables	z	x_1	x_2	x_3	x_4	x_5		
Coefficients	1	0	0	-1	1	0	=	1
	0	1	1	0	1	0	=	1
	0	0	-1	1	0	1	=	0
Values	1	1	0	0	0	0		

The value of the objective function (z) is increased to 1 after the first iteration. In iteration 2, the only choice of entering variable is x_2 . The leaving variable should be x_1 .

Variables	z	x_1	x_2	x_3	x_4	x_5		
Coefficients	1	0	-1	0	1	1	=	1
	0	1	1	0	1	0	=	1
	0	0	-1	1	0	1	=	0
Values	1	1	0	0	0	0		

After iteration 2, the value of the objective function remains the same (z = 1). Due to degeneracy, basis change does not cause the iteration to follow an edge; we are still in the same vertex (see figure 1). After the last iteration shown below, the optimal value (z = 2) is found.

Variables	z	x_1	x_2	x_3	x_4	x_5		
Coefficients	1	1	0	0	2	1	=	2
	0	1	1	0	1	0	=	1
	0	1	0	1	1	1	=	1
Values	2	0	1	1	0	0		