Examples of Solving Knapsack Problem

Using Dynamic Programming
AdvOL @McMaster, http://optlab.mcmaster.ca
February 22, 2009.

1. Consider the following knapsack problem:

max r1 + 4xe + 323
1+ 3re+ 223 < 4

Solve the problem for x; € {0,1} using dynamic programming.

Solution. Let V' = [1,4,3] and W = [1, 3, 2] be the array of weights and values of the
3 items respectively. Make a table representing a 2-dimensional array A of size 3 x 4.
Element Afi,j] (i =1,...,3,7 =1,...,4) stores the maximal value of items from the set
{item 1, item 2, ..., item i} that can be put into a knapsack with capacity j. A[l,] for
all 7 can be easily filled in. The remaining elements in the table can be calculated in the
following way:

o fAli-17] if Wli] > j.
Ali- gl = {max{A[i —1,7], V[i] + Ali — 1,5 — W[i]]} otherwise.

The table is shown below:

J

=1
1
1
1

W =N
=~ =~ =W
[S2 32 I N

1=1

2

3

The final solution is stored in A[3,4], i.e., the maximum value obtained is 5 (by choosing
item 1 and 2).

2. Consider the following knapsack problem:

max 0.5x1 +4x9 + 323
l‘1+3$2+2l’3 S 5
Solve the problem for z; € Z, (non-negative integers: 0, 1, 2, 3,...) using dynamic pro-

gramming.

Solution. The solution is very similar to the previous one except the way the elements
of A are updated:

Ali —1,7] if Wi > 7,
Ali, j] = q max{A[i — 1,j], kV[i] + A[i = 1,j — kW [i]]}
where k =1,..., |_ijj otherwise.

The table is shown below:

j=12 3 4 5
i=1| 05 1 15 2 25
2| 05 1 4 45 5
3] 05 3 4 6 7

So the maximum value obtained is 7 (by choosing one item 2 and one item 3).

