
Examples of Solving Knapsack Problem

Using Dynamic Programming
AdvOL @McMaster, http://optlab.mcmaster.ca

February 22, 2009.

1. Consider the following knapsack problem:

max x1 + 4x2 + 3x3

x1 + 3x2 + 2x3 ≤ 4

Solve the problem for xi ∈ {0, 1} using dynamic programming.

Solution. Let V = [1, 4, 3] and W = [1, 3, 2] be the array of weights and values of the
3 items respectively. Make a table representing a 2-dimensional array A of size 3 × 4.
Element A[i, j] (i = 1, . . . , 3, j = 1, . . . , 4) stores the maximal value of items from the set
{item 1, item 2, . . . , item i} that can be put into a knapsack with capacity j. A[1, i] for
all i can be easily filled in. The remaining elements in the table can be calculated in the
following way:

A[i, j] =

{
A[i− 1, j] if W [i] > j,

max{A[i− 1, j], V [i] + A[i− 1, j −W [i]]} otherwise.

The table is shown below:

j = 1 2 3 4
i = 1 1 1 1 1

2 1 1 4 5
3 1 3 4 5

The final solution is stored in A[3, 4], i.e., the maximum value obtained is 5 (by choosing
item 1 and 2).

2. Consider the following knapsack problem:

max 0.5x1 + 4x2 + 3x3

x1 + 3x2 + 2x3 ≤ 5

Solve the problem for xi ∈ Z+ (non-negative integers: 0, 1, 2, 3,...) using dynamic pro-
gramming.

Solution. The solution is very similar to the previous one except the way the elements
of A are updated:

A[i, j] =





A[i− 1, j] if W [i] > j,

max{A[i− 1, j], kV [i] + A[i− 1, j − kW [i]]}
where k = 1, . . . , b j

W [i]
c otherwise.



The table is shown below:

j = 1 2 3 4 5
i = 1 0.5 1 1.5 2 2.5

2 0.5 1 4 4.5 5
3 0.5 3 4 6 7

So the maximum value obtained is 7 (by choosing one item 2 and one item 3).


